Uncovering the microbial diversity of Czech Republic archives: A study of metabolically active airborne microbes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38560214
PubMed Central
PMC10981025
DOI
10.1016/j.heliyon.2024.e27930
PII: S2405-8440(24)03961-6
Knihovny.cz E-zdroje
- Klíčová slova
- Culture-dependent approach, Illumina MiSeq, Increasing culturability, Microbial air analysis, RNA analysis,
- Publikační typ
- časopisecké články MeSH
Despite the diligent efforts of libraries, archives, and similar institutions to preserve cultural monuments, biodeterioration continues to pose a significant threat to these objects. One of the main sources of microorganisms responsible for the biodeterioration process is the presence of airborne microorganisms. Therefore, this research aims to monitor and compare outcomes of both culture-dependent (utilising various cultivation strategies) and culture-independent approaches (RNA-based sequencing) to identifying metabolically active airborne microorganisms in archives in the Czech Republic. Through this study, several species that have the potential to pose risks to both cultural heritage objects and the health of institution employees were found. Additionally, the efficacy of different cultivation media was demonstrated to be varied across archive rooms, highlighting the necessity of employing multiple cultivation media for comprehensive analyses. Of noteworthy importance, the resuscitating-promoting factor (Rpf) proved to be a pivotal tool, increasing bacterial culturability by up to 30% when synergistically employed Reasoner's 2A agar (R2A) and R2A + Rpf media. Next, the study emphasises the importance of integrating both culture-dependent and culture-independent approaches. The overlap between genera identified by the culture-dependent approach and those identified also by the culture-independent approach varied from 33% to surpassing 94%, with the maximum alignment exceeding 94% in only one case. Our results highlight the importance of actively monitoring and assessing levels of microbial air contamination in archives to prevent further deterioration of cultural heritage objects and to promote improved conditions for employees in archives and similar institutions.
Zobrazit více v PubMed
Kalwasinska A., Burkowska A., Wilk I. Microbial air contamination in indoor environment of a university library. Ann. Agric. Environ. Med. 2012;19:25–29. PubMed
Saleem H., Zaidi S.J., Ismail A.F., Goh P.S. Advances of nanomaterials for air pollution remediation and their impacts on the environment. Chemosphere. 2022;287 doi: 10.1016/j.chemosphere.2021.132083. PubMed DOI
Prussin A.J., Marr L.C. Sources of airborne microorganisms in the built environment. Microbiome. 2015;3 doi: 10.1186/s40168-015-0144-z. PubMed DOI PMC
Karbowska-Berent J., Gorny R.L., Strzelczyk A.B., Wlazlo A. Airborne and dust borne microorganisms in selected Polish libraries and archives. Build. Environ. 2011;46:1872–1879. doi: 10.1016/j.buildenv.2011.03.007. DOI
Sterflinger K., Pinar G. Microbial deterioration of cultural heritage and works of art - tilting at windmills? Appl. Microbiol. Biotechnol. 2013;97:9637–9646. doi: 10.1007/s00253-013-5283-1. PubMed DOI PMC
Borrego S., Guiamet P., de Saravia S.G., Batistini P., Garcia M., Lavin P., Perdomo I. The quality of air at archives and the biodeterioration of photographs. Int. Biodeterior. Biodegrad. 2010;64:139–145. doi: 10.1016/j.ibiod.2009.12.005. DOI
Okpalanozie O.E., Adebusoye S.A., Troiano F., Catto C., Ilori M.O., Cappitelli F. Assessment of indoor air environment of a Nigerian museum library and its biodeteriorated books using culture-dependent and -independent techniques. Int. Biodeterior. Biodegrad. 2018;132:139–149. doi: 10.1016/j.ibiod.2018.03.003. DOI
Foladi S., Hedayati M.T., Shokohi T., Mayahi S. Study on fungi in archives of offices, with a particular focus on Stachybotrys chartarum. J. Mycolog. Med. 2013;23:242–246. doi: 10.1016/j.mycmed.2013.09.003. PubMed DOI
Viegas C., Cervantes R., Dias M., Gomes B., Pena P., Carolino E., Twaruzek M., Kosicki R., et al. Unveiling the occupational exposure to microbial contamination in conservation-restoration settings. Microorganisms. 2022;10 doi: 10.3390/microorganisms10081595. PubMed DOI PMC
Zielinska-Jankiewicz K., Kozajda A., Piotrowska M., Szadkowska-Stanczyk I. Microbiological contamination with moulds in work environment in libraries and archive storage facilities. Ann. Agric. Environ. Med. 2008;15:71–78. PubMed
Borrego S., Lavin P., Perdomo I., de Saravia S.G., Guiamet P. Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiology. 2012;2012 doi: 10.5402/2012/680598. PubMed DOI PMC
Liu Z.J., Zhang Y.H., Zhang F.Y., Hu C.T., Liu G.L., Pan J. Microbial community analyses of the deteriorated storeroom objects in the Tianjin museum using culture-independent and culture-dependent approaches. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00802. PubMed DOI PMC
Dziurzynski M., Ciuchcinski K., Dyda M., Szych A., Drabik P., Laudy A., Dziewit L. Assessment of bacterial contamination of air at the museum of king John III's Palace at Wilanow (Warsaw, Poland): selection of an optimal growth medium for analyzing airborne bacteria diversity. Appl. Sci. 2020;10 doi: 10.3390/app10207128. DOI
Branysova T., Demnerova K., Durovic M., Stiborova H. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. J. Cult. Herit. 2022;55:245–260. doi: 10.1016/j.culher.2022.03.013. DOI
Horgan S.E., Matheson M.M., McLoughlin-Borlace L., Dart J.K. Use of a low nutrient culture medium for the identification of bacteria causing severe ocular infection. J. Med. Microbiol. 1999;48:701–703. doi: 10.1099/00222615-48-7-701. PubMed DOI
Vartoukian S.R., Palmer R.M., Wade W.G. Strategies for culture of 'unculturable' bacteria. FEMS Microbiol. Lett. 2010;309:1–7. doi: 10.1111/j.1574-6968.2010.02000.x. PubMed DOI
Tepla B., Demnerova K., Stiborova H. History and microbial biodeterioration of audiovisual materials. J. Cult. Herit. 2020 doi: 10.1016/j.culher.2019.12.009. DOI
Bodor A., Bounedjoum N., Vincze G.E., Kis A.E., Laczi K., Bende G., Szilagyi A., Kovacs T., et al. Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. Biotechnol. 2020;19:1–22. doi: 10.1007/s11157-020-09522-4. DOI
Lopez Marin M.A., Strejcek M., Junkova P., Suman J., Santrucek J., Uhlik O. Exploring the potential of Micrococcus luteus culture supernatant with resuscitation-promoting factor for enhancing the culturability of soil bacteria. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.685263. PubMed DOI PMC
Mukamolova G.V., Kaprelyants A.S., Young D.I., Young M., Kell D.B. A bacterial cytokine. Biol. Sci. 1998;95:8916–8921. doi: 10.1073/pnas.95.15.8916. PubMed DOI PMC
Gutarowska B. The use of -omics tools for assessing biodeterioration of culture heritage: a review. J. Cult. Herit. 2020 doi: 10.1016/j.culher.2020.03.006. DOI
Han Y.Q., Huang X.D., Wang Y., Du J., Ma K.X., Chen Y., Li N.S., Zhang Z.G., et al. Fungal community and biodeterioration analysis of hull wood and its storage environment of the nanhai No. 1 shipwreck. Front. Microbiol. 2021;11 doi: 10.3389/fmicb.2020.609475. PubMed DOI PMC
Pyzik A., Ciuchcinski K., Dziurzynski M., Dziewit L. The bad and the good-microorganisms in cultural heritage environments-an update on biodeterioration and biotreatment approaches. Materials. 2021;14 doi: 10.3390/ma14010177. PubMed DOI PMC
Klein A.M., Bohannan B.J.M., Jaffe D.A., Levin D.A., Green J.L. Molecular evidence for metabolically active bacteria in the atmosphere. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00772. PubMed DOI PMC
Chen Y., Zhu X., Hou Z., Wang Y., Zhou Y., Wang L., Liu L., Duan J., et al. RNA-based analysis reveals high diversity of plant-associated active fungi in the atmosphere. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.683266. PubMed DOI PMC
Kapinusova G., Lopez Marin M.A., Uhlik O. Reaching unreachables: obstacles and successes of microbial cultivation and their reasons. Front. Microbiol. 2023;14 doi: 10.3389/fmicb.2023.1089630. PubMed DOI PMC
Su X.M., Liu Y.D., Hu J.X., Ding L.X., Shen C.F. Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. SpringerPlus. 2014;3 doi: 10.1186/2193-1801-3-117. PubMed DOI PMC
Kracmarova M., Karpiskova J., Uhlik O., Strejcek M., Szakova J., Balik J., Demnerova K., Stiborova H. Microbial communities in soils and endosphere of Solanum tuberosum L. And their response to long-term fertilization. Microorganisms. 2020;8 PubMed PMC
Branysova T., Kracmarova M., Durovic M., Demnerova K., Stiborova H. Factors influencing the fungal diversity on audio–visual materials. Microorganisms. 2021;9 doi: 10.3390/microorganisms9122497. PubMed DOI PMC
Stecher G., Tamura K., Kumar S. Molecular evolutionary Genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 2020;37:1237–1239. PubMed PMC
R R.C.T. R Foundation for Statistical Computing; Vienna, Austria: 2017. A Language and Environment for Statistical Computing.
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Callahan B.J. 2018. Silva Taxonomic Training Data Fromatted for DADA2. Silva version 132 ed.
UNITE community. 2019. https://unite.ut.ee/repository.php
Vegan: community ecology package. R-Package version 2.5-7. 2019. https://cran.r-project.org/web/packages/vegan/index.html Available online: (J. Oksanen, F.G. Blanchet, R. Kindlt, P. Legendre, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, et al. Accessed)
McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8 doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Savkovic Z., Stupar M., Unkovic N., Knezevic A., Vukojevic J., Grbic M.L. In: Biodegradation Technology of Organic and Inorganic Pollutants. MENDES K.F., DE SOUSA R.N., MIELKE K.C., editors. IntechOpen; 2022. Fungal deterioration of cultural heritage objects.
Micheluz A., Manente S., Prigione V., Tigini V., Varese G.C., Ravagnan G. The effects of book disinfection to the airborne microbiological community in a library environment. Aerobiologia. 2018;34:29–44. doi: 10.1007/s10453-017-9492-4. DOI
Lisa N. Master thesis; UCT Prague: 2021. Vyhodnocení Mikrobiální Kontaminace Audiovizuálních Materiálů Kultivačními a Molekulárně-Biologickými Technikami.
Puskarova A., Buckova M., Habalova B., Krakova L., Makova A., Pangallo D. Microbial communities affecting albumen photography heritage: a methodological survey. Sci. Rep. 2016;6 doi: 10.1038/srep20810. PubMed DOI PMC
Pietrzak K., Puchalski M., Otlewska A., Wrzosek H., Guiamet P., Piotrowska M., Gutarowska B. Microbial diversity of pre-Columbian archaeological textiles and the effect of silver nanoparticles misting disinfection. J. Cult. Herit. 2017;23:138–147. doi: 10.1016/j.culher.2016.07.007. DOI
Krakova L., Soltys K., Otlewska A., Pietrzak K., Purkrtova S., Savicka D., Puskarova A., Buckova M., et al. Comparison of methods for identification of microbial communities in book collections: culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq) Int. Biodeterior. Biodegrad. 2018;131:51–59. doi: 10.1016/j.ibiod.2017.02.015. DOI
Ciric S., Knezevic P., Petrovic O. Low-nutrient R2A medium in the assessment of bacteriological status of water and other environments. Fresenius Environ. Bull. 2022;31:9005–9020.
Frankel M., Bekö G., Timm M., Gustavsen S., Hansen E.W., Madsen A.M. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl. Environ. Microbiol. 2012;78:8289–8297. doi: 10.1128/AEM.02069-12. PubMed DOI PMC
Islam M.A., Ikeguchi A., Naide T. Concentrations of aerosol numbers and airborne bacteria, and temperature and relative humidity, and their interrelationships in a tie-stall dairy barn. Animals. 2019;9 doi: 10.3390/ani9121023. PubMed DOI PMC
Grisoli P., Albertoni M., Rodolfi M. Application of airborne microorganism indexes in offices, gyms, and libraries. Appl. Sci. 2019;9 doi: 10.3390/app9061101. DOI
Di Carlo E., Chisesi R., Barresi G., Barbaro S., Lombardo G., Rotolo V., Sebastianelli M., Travagliato G., et al. Fungi and bacteria in indoor cultural heritage environments: microbial-related risks for artworks and human health. Environ. Ecol. Res. 2016;4:257–264. doi: 10.13189/eer.2016.040504. DOI
Geweely N.S. New frontiers review of some recent conservation techniques of organic and inorganic archaeological artefacts against microbial deterioration. Front. Microbiol. 2023;14 doi: 10.3389/fmicb.2023.1146582. PubMed DOI PMC
Kavkler K., Humar M., Kržišnik D., Turk M., Tavzes Č., Gostinčar C., Džeroski S., Popov S., et al. A multidisciplinary study of biodeteriorated Celje Ceiling, a tempera painting on canvas. Int. Biodeterior. Biodegrad. 2022;170 doi: 10.1016/j.ibiod.2022.105389. DOI
Szulc J., Ruman T., Karbowska-Berent J., Kozielec T., Gutarowska B. Analyses of microorganisms and metabolites diversity on historic photographs using innovative methods. J. Cult. Herit. 2020 doi: 10.1016/j.culher.2020.04.017. DOI
Branysova T., Limpouch O., Durovic M., Demnerova K., Stiborova H. Bacterial diversity on historical audio-visual materials and in the atmosphere of Czech depositories. Microbiol. Spectr. 2023 doi: 10.1128/spectrum.01176-23. PubMed DOI PMC
Lasek R., Szuplewska M., Mitura M., Decewicz P., Chmielowska C., Pawlot A., Sentkowska D., Czarnecki J., et al. Genome structure of the opportunistic pathogen Paracoccus yeei (alphaproteobacteria) and identification of putative virulence factors. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.02553. PubMed DOI PMC
Saridaki A., Katsivela E., Glytsos T., Tsiamis G., Violaki E., Kaloutsakis A., Kalogerakis N., Lazaridis M. Identification of bacterial communities on different surface materials of museum artefacts using high throughput sequencing. J. Cult. Herit. 2022;54:44–52. doi: 10.1016/j.culher.2022.01.010. DOI
Pavlović J., Puskarova A., Plany M., Farkas Z., Ruskova M., Kvalova K., Krakova L., Buckova M., et al. Colored strains: microbial survey of cellulose-based and lignin rich papers. Int. J. Biol. Macromol. 2023;241 doi: 10.1016/j.ijbiomac.2023.124456. PubMed DOI
Weon H.-Y., Kim B.-Y., Hong S.-B., Joa J.-H., Nam S.-S., Lee K.H., Kwon S.-W. Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella. Int. J. Syst. Evol. Microbiol. 2007;57:1539–1542. doi: 10.1099/ijs.0.64676-0. PubMed DOI
Heo S.T., Kwon K.T., Yoo J.R., Choi J.Y., Lee K.H., Ko K.S. First case of necrotizing fasciitis caused by Skermanella aerolata infection mimicking Vibrio sepsis. Annals of Laboratory Medicine. 2018;38:604–606. doi: 10.3343/alm.2018.38.6.604. PubMed DOI PMC
Sun H.J., Zhang G., Jibrin Z. Carbonate dissolution without acid: carbonate hydrolysis, catalyzed by photosynthetic microorganisms, in deteriorating stone monuments. bioRxiv. 2023;2023 doi: 10.1101/2023.07.14.549033. 07. 14. DOI
Bertout S., Gouveia T., Krasteva D., Pierru J., Pottier C., Bellet V., Arianiello E., Salipante F., et al. Search for Cryptococcus neoformans/gattii complexes and related genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) spp. biotope: two years surveillance of wild avian fauna in Southern France. Journal of Fungi. 2022;8 doi: 10.3390/jof8030227. PubMed DOI PMC
Dominguez-Moñino I., Jurado V., Rogerio-Candelera M.A., Hermosin B., Saiz-Jimenez C. Airborne fungi in show caves from Southern Spain. Appl. Sci. 2021;11 doi: 10.3390/app11115027. PubMed DOI PMC
Hashimoto K., Yamazaki F., Kohyama N., Kawakami Y. Analysis of fungal flora in the dust of bedding in Japanese houses and genetic identification of yeasts isolated from the dust. Biocontrol Sci. 2020;5:193–202. PubMed
Sanchez-Moral S., Jurado V., Fernandez-Cortes A., Cuezva S., Martin-Pozas T., Gonzalez-Pimentel J.L., Ontañon R., Saiz-Jimenez C. Environment-driven control of fungi in subterranean ecosystems: the case of La Garma Cave (northern Spain) Int. Microbiol. 2021;24:573–591. doi: 10.1007/s10123-021-00193-x. PubMed DOI PMC
Aboutalebian S., Mahmoudi S., Okhovat A., Khodavaisy S., Mirhendi H. Otomycosis due to the rare fungi Talaromyces purpurogenus, Naganishia albida and Filobasidium magnum. Mycopathologia. 2020;185:569–575. doi: 10.1007/s11046-020-00439-8. PubMed DOI
Văcar C.L., Mircea C., Pârvu M., Podar D. Diversity and metabolic activity of fungi causing biodeterioration of canvas paintings. Journal of Fungi. 2022;8 doi: 10.3390/jof8060589. PubMed DOI PMC
Damji R., Mukherji A., Mussani F. Sporobolomyces salmonicolor: a case report of a rare cutaneous fungal infection. SAGE Open Medical Case Reports. 2019;7 doi: 10.1177/2050313X19844154. PubMed DOI PMC
Moore J.E., Xu J., Cherie Millar B., Elshiby S. Edible dates (Phoenix dactylifera), a potential source of Cladosporium cladosporioides and Sporobolomyces roseus: implications for public health. Mycopathologia. 2001;152:25–28. PubMed
Silva N.C., Madureira A.R., Pintado M., Moreira P.R. Biocontamination and diversity of epilithic bacteria and fungi colonising outdoor stone and mortar sculptures. Appl. Microbiol. Biotechnol. 2022;106:3811–3828. doi: 10.1007/s00253-022-11957-4. PubMed DOI
Moller A.G., Lindsay J.A., Read T.D. Determinants of phage host range in Staphylococcus species. Appl. Environ. Microbiol. 2019;85 doi: 10.1128/AEM.00209-19. PubMed DOI PMC
Visagie C.M., Houbraken J., Frisvad J.C., Hong S.-B., Klaassen C.H.W., Perrone G., Seifert K.A., Varga J., et al. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014;78:343–371. doi: 10.1016/j.simyco.2014.09.001. PubMed DOI PMC
Iturrieta-González I., Giacaman A., Godoy-Martínez P., Vega F., Sepúlveda M., Santos C., Toledo V., Rivera G., et al. Penicillium digitatum, first clinical report in Chile: fungal Co-infection in COVID-19 patient. Journal of Fungi. 2022;8 doi: 10.3390/jof8090961. PubMed DOI PMC
Ward M.D.W., Chung Y.J., Copeland L.B., Doerfler D.L. A comparison of the allergic responses induced by Penicillium chrysogenum and house dust mite extraxts in a mouse model. Indoor Air. 2010;20:380–391. doi: 10.1111/j.1600-0668.2010.00660.x. PubMed DOI
Schwab C.J., Cooley J.D., Jumper C.J., Graham S.C., Straus D.C. Allergic inflammation induced by a Penicillium chrysogenum conidia-associated allergen extract in a murine model. Allergy. 2004;59 doi: 10.1111/j.1398-9995.2004.00481.x. PubMed DOI
Savkovic Z., Stupar M., Unkovic N., Ivanovic Z., Blagojevic J., Vukojevic J., Grbic M.L. In vitro biodegradation potential of airborne Aspergilli and Penicillia. Sci. Nat. 2019;106 doi: 10.1007/s00114-019-1603-3. PubMed DOI
Abrusci C., Martin-Gonzalez A., Del Amo A., Catalina F., Collado J., Platas G. Isolation and identification of bacteria and fungi from cinematographic films. Int. Biodeterior. Biodegrad. 2005;56:58–68. doi: 10.1016/j.ibiod.2005.05.004. DOI
Bellemain E., Carlsen T., Brochmann C., Coissac E., Taberlet P., Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10 doi: 10.1186/1471-2180-10-189. PubMed DOI PMC
Jeon S., Bunge J., Leslin C., Stoeck T., Hong S., Epstein S.S. Environmental rRNA inventories miss over half of protistan diversity. BMC Microbiol. 2008;8 doi: 10.1186/1471-2180-8-222. PubMed DOI PMC
Varliero G., Lebre P.D., Stevens M.I., Czechowski P., Makhalanyane T., Cowan D.A. The use of different 16S rRNA gene variable regions in biogeographical studies. Environ. Microbiol. 2023;15:216–228. doi: 10.1111/1758-2229.13145. PubMed DOI PMC
Zhang J., Ding X., Guan R., Zhu C., Xu C., Zhu B., Zhang H., Xiong Z., et al. Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake. Sci. Total Environ. 2018;618:1254–1267. doi: 10.1016/j.scitotenv.2017.09.228. PubMed DOI
Henrik Nilsson R., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. Mycobiome diversity:high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019;17:95–109. doi: 10.1038/s41579-018-0116-y. PubMed DOI
Rämä T., Quandt C.A. Improving fungal cultivability for natural products discovery. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.706044. PubMed DOI PMC