Exploring the Potential of Micrococcus luteus Culture Supernatant With Resuscitation-Promoting Factor for Enhancing the Culturability of Soil Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34267737
PubMed Central
PMC8276245
DOI
10.3389/fmicb.2021.685263
Knihovny.cz E-zdroje
- Klíčová slova
- Micrococcus luteus, extracellular organic matter, increased culturability, non-cultured bacteria, oligotrophic medium, resuscitation-promoting factor, viable but non-culturable state,
- Publikační typ
- časopisecké články MeSH
A bacterial species is best characterized after its isolation in a pure culture. This is an arduous endeavor for many soil microorganisms, but it can be simplified by several techniques for improving culturability: for example, by using growth-promoting factors. We investigated the potential of a Micrococcus luteus culture supernatant containing resuscitation-promoting factor (SRpf) to increase the number and diversity of cultured bacterial taxa from a nutrient-rich compost soil. Phosphate-buffered saline and inactivated SRpf were included as controls. After agitation with SRpf at 28°C for 1 day, the soil suspension was diluted and plated on two different solid, oligotrophic media: tenfold diluted Reasoner's 2A agar (R2A) and soil extract-based agar (SA). Colonies were collected from the plates to assess the differences in diversity between different treatments and cultivation media. The diversity on both R2A and SA was higher in the SRpf-amended extracts than the controls, but the differences on R2A were higher. Importantly, 51 potentially novel bacterial species were isolated on R2A and SA after SRpf treatment. Diversity in the soil extracts was also determined by high-throughput 16S rRNA amplicon sequencing, which showed an increase in the abundance of specific taxa before their successful cultivation. Conclusively, SRpf can effectively enhance the growth of soil bacterial species, including those hitherto uncultured.
Zobrazit více v PubMed
Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R.Statist. Soc. 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI
Bhuiyan M. N. I., Takai R., Mitsuhashi S., Shigetomi K., Tanaka Y., Kamagata Y., et al. (2016). Zincmethylphyrins and coproporphyrins, novel growth factors released by Sphingopyxis sp., enable laboratory cultivation of previously uncultured Leucobacter sp. through interspecies mutualism. J. Antib. 69 97–103. 10.1038/ja.2015.87 PubMed DOI
Bruns A., Cypionka H., Overmann J. (2002). Cyclic amp and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microb. 68 3978–3987. 10.1128/aem.68.8.3978-3987.2002 PubMed DOI PMC
Bruns A., Nübel U., Cypionka H., Overmann J. (2003). Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microb. 69 1980–1989. 10.1128/aem.69.4.1980-1989.2003 PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13 581–583. 10.1038/nmeth.3869 PubMed DOI PMC
Campitelli E. (2020). ggnewscale: multiple fill and colour scales in ‘ggplot2’ Version: 0.4.5.
Cayuela L., Gotelli N. J. (2014). rareNMtests: ecological and biogeographical null model tests for comparing rarefaction curves. R Pack. Ver. 1.
D’Onofrio A., Crawford J. M., Stewart E. J., Witt K., Gavrish E., Epstein S., et al. (2010). Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17 254–264. 10.1016/j.chembiol.2010.02.010 PubMed DOI PMC
Dedysh S. N., Yilmaz P. (2018). Refining the taxonomic structure of the phylum Acidobacteria. Intern. J. Syst. Evol. Microb. 68 3796–3806. 10.1099/ijsem.0.003062 PubMed DOI
Ding L., Xu P., Zhang W., Yuan Y., He X., Su D., et al. (2020). Three new diketopiperazines from the previously uncultivable marine bacterium Gallaecimonas mangrovi HK-28 cultivated by ichip. Chem. Biodiv. 17:e2000221. 10.1002/cbdv.202000221 PubMed DOI
Escobar-Zepeda A., Vera-Ponce de León A., Sanchez-Flores A. (2015). The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front. Genet. 6:348. 10.3389/fgene.2015.00348 PubMed DOI PMC
Fraraccio S., Strejcek M., Dolinova I., Macek T., Uhlik O. (2017). Secondary compound hypothesis revisited: selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci. Rep. 7:8406. 10.1038/s41598-017-07760-1 PubMed DOI PMC
García-López M., Meier-Kolthoff J. P., Tindall B. J., Gronow S., Woyke T., Kyrpides N. C., et al. (2019). Analysis of 1,000 type-strain genomes improves taxonomic classification of bacteroidetes. Front. Microb. 10:2083. 10.3389/fmicb.2019.02083 PubMed DOI PMC
Gibb S., Strimmer K. (2012). MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28 2270–2271. 10.1093/bioinformatics/bts447 PubMed DOI
Greub G. (2012). Culturomics: a new approach to study the human microbiome. Clin. Microb. Infect. 18 1157–1159. 10.1111/1469-0691.12032 PubMed DOI
Gutleben J., Chaib, De Mares M., van Elsas J. D., Smidt H., Overmann J., et al. (2018). The multi-omics promise in context: from sequence to microbial isolate. Crit. Rev. Microb. 44 212–229. 10.1080/1040841X.2017.1332003 PubMed DOI
Hamaki T., Suzuki M., Fudou R., Jojima Y., Kajiura T., Tabuchi A., et al. (2005). Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99 485–492. 10.1263/jbb.99.485 PubMed DOI
Herigstad B., Hamilton M., Heersink J. (2001). How to optimize the drop plate method for enumerating bacteria. J. Microb. Methods 44 121–129. 10.1016/S0167-7012(00)00241-4 PubMed DOI
Hett E. C., Chao M. C., Steyn A. J., Fortune S. M., Deng L. L., Rubin E. J. (2007). A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mole. Microbiol. 66 658–668. 10.1111/j.1365-2958.2007.05945.x PubMed DOI
Hill T. C. J., Walsh K. A., Harris J. A., Moffett B. F. (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43 1–11. 10.1111/j.1574-6941.2003.tb01040.x PubMed DOI
Hördt A., López M. G., Meier-Kolthoff J. P., Schleuning M., Weinhold L.-M., Tindall B. J., et al. (2020). Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of alphaproteobacteria. Front. Microb. 11:468. 10.3389/fmicb.2020.00468 PubMed DOI PMC
Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian J. Stat. 11 265–270.
Jin Y., Gan G., Yu X., Wu D., Zhang L., Yang N., et al. (2017). Isolation of viable but non-culturable bacteria from printing and dyeing wastewater bioreactor based on resuscitation promoting factor. Curr. Microbiol. 74 787–797. 10.1007/s00284-017-1240-z PubMed DOI
Kana B. D., Mizrahi V. (2010). Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microb. 58 39–50. 10.1111/j.1574-695X.2009.00606.x PubMed DOI
Kaprelyants A. S., Gottschal J. C., Kell D. B. (1993). Dormancy in non-sporulating bacteria. FEMS Microbiol. Lett. 104 271–285. 10.1016/0378-1097(93)90600-7 PubMed DOI
Kell D. B., Young M. (2000). Bacterial dormancy and culturability: the role of autocrine growth factors: commentary. Curr. Opin. Microb. 3 238–243. 10.1016/S1369-5274(00)00082-5 PubMed DOI
Kim J.-J., Alkawally M., Brady A. L., Rijpstra W. I. C., Sinninghe Damsté J. S., Dunfield P. F. (2013). Chryseolinea serpens gen. nov., sp. nov., a member of the phylum bacteroidetes isolated from soil. Intern. J. Syst. Evol. Microb. 63(Pt_2) 654–660. 10.1099/ijs.0.039404-0 PubMed DOI
Kim M., Oh H.-S., Park S.-C., Chun J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Intern. J. Syst. Evol. Microbiol. 64(Pt_2) 346–351. 10.1099/ijs.0.059774-0 PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mole. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A. (2009). Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Intern. J. Syst. Evol. Microb. 59 869–873. 10.1099/ijs.0.005611-0 PubMed DOI
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680. 10.1038/227680a0 PubMed DOI
Lane D. J. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, eds Stackebrandt E., Goodfellow M. (New York, NY: John Wiley and Sons; ), 115–175.
Li Z., Zhang Y., Wang Y., Mei R., Zhang Y., Hashmi M. Z., et al. (2018). A new approach of rpf addition to explore bacterial consortium for enhanced phenol degradation under high salinity conditions. Curr. Microb. 75 1046–1054. 10.1007/s00284-018-1489-x PubMed DOI
Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., et al. (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517 455–459. 10.1038/nature14098 PubMed DOI PMC
Link L., Sawyer J., Venkateswaran K., Nicholson W. (2004). Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb. Ecol. 47 159–163. 10.1007/s00248-003-1029-4 PubMed DOI
Lozupone C., Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microb. 71:8228. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Manivasagan P., Kang K.-H., Sivakumar K., Li-Chan E. C. Y., Oh H.-M., Kim S.-K. (2014). Marine actinobacteria: an important source of bioactive natural products. Environ. Toxicol. Pharm. 38 172–188. 10.1016/j.etap.2014.05.014 PubMed DOI
Martinez Arbizu P. (2020). pairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.0.1.
McLain J. E., Cytryn E., Durso L. M., Young S. (2016). Culture-based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. J. Environ. Q. 45 432–440. 10.2134/jeq2015.06.0317 PubMed DOI
McMurdie P. J., Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC
Mukamolova G. V., Kaprelyants A. S., Kell D. B., Young M. (2003). Adoption of the transiently non-culturable state - a bacterial survival strategy? Adv. Microb. Phys. 47 65–129. 10.1016/s0065-2911(03)47002-1 PubMed DOI
Mukamolova G. V., Kormer S. S., Kell D. B., Kaprelyants A. S. (1999). Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. Archiv. Microbiol. 172 9–14. 10.1007/s002030050733 PubMed DOI
Mukamolova G. V., Murzin A. G., Salina E. G., Demina G. R., Kell D. B., Kaprelyants A. S., et al. (2006). Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mole. Microbiol. 59 84–98. 10.1111/j.1365-2958.2005.04930.x PubMed DOI
Nesterenko O., Kvasnikov E., Nogina T. (1985). Nocardioidaceae fam. nov., a new family of the order Actinomycetales Buchanan 1917. Mikrobiol. Zhurnal. 47 3–12.
Nichols D. (2007). Cultivation gives context to the microbial ecologist. FEMS Microbiol. Ecol. 60 351–357. 10.1111/j.1574-6941.2007.00332.x PubMed DOI
Nikitushkin V. D., Demina G. R., Kaprelyants A. S. (2016). Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. Biochemistry 81 1719–1734. 10.1134/S0006297916130095 PubMed DOI
Nikitushkin V. D., Demina G. R., Shleeva M. O., Kaprelyants A. S. (2013). Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie van Leeuwenhoek 103 37–46. 10.1007/s10482-012-9784-1 PubMed DOI
Nowrotek M., Jałowiecki Ł, Harnisz M., Płaza G. A. (2019). Culturomics and metagenomics: in understanding of environmental resistome. Front. Env. Sci. Eng. 13:40. 10.1007/s11783-019-1121-8 DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2019). vegan: Community ecology package. R package version 2.5-6.
Overmann J., Abt B., Sikorski J. (2017). Present and future of culturing bacteria. Ann. Rev. Microb. 71 711–730. 10.1146/annurev-micro-090816-093449 PubMed DOI
Paradis E., Schliep K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35 526–528. 10.1093/bioinformatics/bty633 PubMed DOI
Pascoal F., Magalhães C., Costa R. (2020). The link between the ecology of the prokaryotic rare biosphere and Its biotechnological potential. Front. Microb. 11:231. 10.3389/fmicb.2020.00231 PubMed DOI PMC
Pham V. H. T., Kim J. (2012). Cultivation of unculturable soil bacteria. Trends Biotechnol. 30 475–484. 10.1016/j.tibtech.2012.05.007 PubMed DOI
Pinto D., Almeida V., Almeida Santos M., Chambel L. (2011). Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J. Appl. Microbiol. 110 1601–1611. 10.1111/j.1365-2672.2011.05016.x PubMed DOI
Pinto D., Santos M. A., Chambel L. (2015). Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microb. 41 61–76. 10.3109/1040841X.2013.794127 PubMed DOI
Popov N., Schmitt M., Schulzeck S., Matthies H. (1975). Reliable micromethod for determination of the protein content in tissue homogenates. Acta Biolog. Medica German. 34 1441–1446. PubMed
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC
Ridl J., Suman J., Fraraccio S., Hradilova M., Strejcek M., Cajthaml T., et al. (2018). Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Standards Genom. Sci. 13:3. 10.1186/s40793-017-0306-7 PubMed DOI PMC
Robinson M. D., McCarthy D. J., Smyth G. K. (2009). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Sexton D. L., Herlihey F. A., Brott A. S., Crisante D. A., Shepherdson E., Clarke A. J., et al. (2020). Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J. Biol. Chem. RA120:013994. 10.1074/jbc.RA120.013994 PubMed DOI PMC
Shah I. M., Dworkin J. (2010). Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mole. Microb. 75 1232–1243. 10.1111/j.1365-2958.2010.07046.x PubMed DOI
Shah I. M., Laaberki M.-H., Popham D. L., Dworkin J. (2008). A eukaryotic-like ser/thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135 486–496. 10.1016/j.cell.2008.08.039 PubMed DOI PMC
Shannon C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27 379–423. 10.1002/j.1538-7305.1948.tb01338.x DOI
Schliep K. P. (2010). phangorn: phylogenetic analysis in R. Bioinformatics 27 592–593. 10.1093/bioinformatics/btq706 PubMed DOI PMC
Signoretto C., del Mar, Lleò M., Tafi M. C., Canepari P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microb. 66 1953–1959. 10.1128/aem.66.5.1953-1959.2000 PubMed DOI PMC
Simpson E. H. (1949). Measurement of diversity. Nature 163 688–688. 10.1038/163688a0 DOI
Stewart E. J. (2012). Growing unculturable bacteria. J. Bacteriol. 194 4151–4160. 10.1128/jb.00345-12 PubMed DOI PMC
Strejcek M., Smrhova T., Junkova P., Uhlik O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microb. 9:1294. 10.3389/fmicb.2018.01294 PubMed DOI PMC
Su X., Li S., Xie M., Tao L., Zhou Y., Xiao Y., et al. (2021). Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere 263:128283. 10.1016/j.chemosphere.2020.128283 PubMed DOI
Su X., Liu Y., Hu J., Ding L., Shen C. (2014). Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. SpringerPlus 3:117. 10.1186/2193-1801-3-117 PubMed DOI PMC
Su X., Shen H., Yao X., Ding L., Yu C., Shen C. (2013). A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour. Technol. 146 27–34. 10.1016/j.biortech.2013.07.028 PubMed DOI
Su X., Wang Y., Xue B., Hashmi M. Z., Lin H., Chen J., et al. (2019). Impact of resuscitation promoting factor (Rpf) in membrane bioreactor treating high-saline phenolic wastewater: performance robustness and Rpf-responsive bacterial populations. Chem. Eng. J. 357 715–723. 10.1016/j.cej.2018.09.197 DOI
Su X., Wang Y., Xue B., Zhang Y., Mei R., Zhang Y., et al. (2018a). Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. Bioresour. Technol. 261 394–402. 10.1016/j.biortech.2018.04.048 PubMed DOI
Su X., Zhang Q., Hu J., Hashmi M. Z., Ding L., Shen C. (2015). Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl. Microbiol. Biotechnol. 99 1989–2000. 10.1007/s00253-014-6108-6 PubMed DOI
Su X., Zhang S., Mei R., Zhang Y., Hashmi M. Z., Liu J., et al. (2018b). Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microb. Biotechnol. 11 527–536. 10.1111/1751-7915.13256 PubMed DOI PMC
R CoreTeam (2020). R: a language and environment for statistical computing. Vienna: Austria: R Foundation for Statistical Computing.
Telkov M. V., Demina G. R., Voloshin S. A., Salina E. G., Dudik T. V., Stekhanova T. N., et al. (2006). Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochemistry 71 414–422. 10.1134/s0006297906040092 PubMed DOI
Wald J., Hroudova M., Jansa J., Vrchotova B., Macek T., Uhlik O. (2015). Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. Front. Microbiol. 6:1268. 10.3389/fmicb.2015.01268 PubMed DOI PMC
Walters W., Hyde E. R., Berg-Lyons D., Ackermann G., Humphrey G., Parada A., et al. (2016). Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1 e00009–e00015. 10.1128/mSystems.00009-15 PubMed DOI PMC
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267. 10.1128/aem.00062-07 PubMed DOI PMC
Westerberg K., Elväng A. M., Stackebrandt E., Jansson J. K. (2000). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Internat. J. Syst. Evol. Microb. 50 2083–2092. 10.1099/00207713-50-6-2083 PubMed DOI
Wickham H. (2016). ggplot2: elegant graphics for data analysis. New York, NY: Springer-Verlag.
Wilke C. O. (2020). cowplot: streamlined plot theme and plot annotations for ‘ggplot2 Version: 1.1.1’.
Wright E. S. (2016). Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8 352–359. 10.32614/rj-2016-025 DOI
Ye Z., Li H., Jia Y., Fan J., Wan J., Guo L., et al. (2020). Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T. Environ. Pollut. 263:114488. 10.1016/j.envpol.2020.114488 PubMed DOI
Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., et al. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Intern. J. Syst. Evol. Microb. 67 1613–1617. 10.1099/ijsem.0.001755 PubMed DOI PMC
Yu C., Liu Y., Jia Y., Su X., Lu L., Ding L., et al. (2020). Extracellular organic matter from Micrococcus luteus containing resuscitation-promoting factor in sequencing batch reactor for effective nutrient and phenol removal. Sci. Total Environ. 727:138627. 10.1016/j.scitotenv.2020.138627 PubMed DOI
Yu G., Smith D. K., Zhu H., Guan Y., Lam T. T.-Y. (2017). ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8 28–36. 10.1111/2041-210X.12628 DOI
Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons
Culturomics of Bacteria from Radon-Saturated Water of the World's Oldest Radium Mine