Culturomics of Bacteria from Radon-Saturated Water of the World's Oldest Radium Mine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36000901
PubMed Central
PMC9602452
DOI
10.1128/spectrum.01995-22
Knihovny.cz E-zdroje
- Klíčová slova
- environmentally relevant cultivation approaches, extremophiles, novel taxa, oxidative stress response, radioactive water springs, subsurface microbiology,
- MeSH
- Bacteria MeSH
- fylogeneze MeSH
- lidé MeSH
- mladiství MeSH
- peroxid vodíku MeSH
- radium * MeSH
- radon * MeSH
- síra MeSH
- stříbro MeSH
- uran * MeSH
- vitamin K 3 MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peroxid vodíku MeSH
- radium * MeSH
- radon * MeSH
- síra MeSH
- stříbro MeSH
- uran * MeSH
- vitamin K 3 MeSH
- voda MeSH
Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.
Zobrazit více v PubMed
Najar IN, Sherpa MT, Das S, Das S, Thakur N. 2018. Microbial ecology of two hot springs of Sikkim: predominate population and geochemistry. Science of The Total Environment 637–638:730–745. doi:10.1016/j.scitotenv.2018.05.037. PubMed DOI
Porowski A. 2019. Mineral and Thermal Waters, p 149–181. In LaMoreaux JW (ed), Environmental Geology. Springer US, New York, NY.
Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG. 2007. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl Environ Microbiol 73:1532–1543. doi:10.1128/AEM.01729-06. PubMed DOI PMC
Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB. 2018. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 9:2876. doi:10.1038/s41467-018-05020-y. PubMed DOI PMC
Fenchel T. 2003. Microbiology. Biogeography for bacteria. Science 301:925–926. doi:10.1126/science.1089242. PubMed DOI
Guo Z, Han J, Li J, Xu Y, Wang X. 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS One 14:e0211163. doi:10.1371/journal.pone.0211163. PubMed DOI PMC
Whitaker RJ, Grogan DW, Taylor JW. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978. doi:10.1126/science.1086909. PubMed DOI
Papke RT, Ramsing NB, Bateson MM, Ward DM. 2003. Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659. doi:10.1046/j.1462-2920.2003.00460.x. PubMed DOI
Klassen JL, Foght JM. 2011. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57. doi:10.1007/s00792-010-0336-1. PubMed DOI
Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. 2004. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92. doi:10.1099/ijs.0.02857-0. PubMed DOI
Makk J, Tóth EM, Anda D, Pál S, Schumann P, Kovács AL, Mádl-Szőnyi J, Márialigeti K, Borsodi AK. 2016. Deinococcus budaensis sp. nov., a mesophilic species isolated from a biofilm sample of a hydrothermal spring cave. Int J Syst Evol Microbiol 66:5345–5351. doi:10.1099/ijsem.0.001519. PubMed DOI
Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ. 2017. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74:116–127. doi:10.1007/s00248-017-0930-1. PubMed DOI
Kumar R, Sharma RC. 2021. Microbial diversity and physico-chemical attributes of two hot water springs in the Garhwal Himalaya, India. J Microbiology, Biotechnology Food Sciences 6:1249–1253. doi:10.1016/j.heliyon.2020.e04850. DOI
Johnson DB, Okibe N, Roberto FF. 2003. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68. doi:10.1007/s00203-003-0562-3. PubMed DOI
González D, Huber KJ, Tindall B, Hedrich S, Rojas-Villalobos C, Quatrini R, Dinamarca MA, Ibacache-Quiroga C, Schwarz A, Canales C, Nancucheo I. 2020. Acidiferrimicrobium australe gen. nov., sp. nov., an acidophilic and obligately heterotrophic, member of the Actinobacteria that catalyses dissimilatory oxido-reduction of iron isolated from metal-rich acidic water in Chile. Int J Syst Evol Microbiol 70:3348–3354. doi:10.1099/ijsem.0.004179. PubMed DOI
Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F. 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913. doi:10.1007/s00253-015-6874-9. PubMed DOI
Lopez Marin MA, Strejcek M, Junkova P, Suman J, Santrucek J, Uhlik O. 2021. Exploring the potential of Micrococcus luteus culture supernatant with resuscitation-promoting factor for enhancing the culturability of soil bacteria. Front Microbiol 12:685263. doi:10.3389/fmicb.2021.685263. PubMed DOI PMC
Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. 1998. A bacterial cytokine. Proc Natl Acad Sci USA 95:8916–8921. doi:10.1073/pnas.95.15.8916. PubMed DOI PMC
Bruns A, Cypionka H, Overmann J. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987. doi:10.1128/AEM.68.8.3978-3987.2002. PubMed DOI PMC
Ishøy T, Kvist T, Westermann P, Ahring BK. 2006. An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Appl Microbiol Biotechnol 69:510–514. doi:10.1007/s00253-005-0014-x. PubMed DOI
Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL, Reysenbach A-L, Podar M. 2016. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 7. doi:10.1038/ncomms12115. PubMed DOI PMC
Jiang C-Y, Dong L, Zhao J-K, Hu X, Shen C, Qiao Y, Zhang X, Wang Y, Ismagilov RF, Liu S-J, Du W. 2016. High throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 82:2210–2218. doi:10.1128/AEM.03588-15. PubMed DOI PMC
Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS. 2010. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450. doi:10.1128/AEM.01754-09. PubMed DOI PMC
Karnachuk OV, Lukina AP, Kadnikov VV, Sherbakova VA, Beletsky AV, Mardanov AV, Ravin NV. 2021. Targeted isolation based on metagenome-assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere. Environ Microbiol 23:3585–3598. doi:10.1111/1462-2920.15218. PubMed DOI
Mu D-S, Liang Q-Y, Wang X-M, Lu D-C, Shi M-J, Chen G-J, Du Z-J. 2018. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6:230. doi:10.1186/s40168-018-0613-2. PubMed DOI PMC
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. 2020. High culturable bacterial diversity from a european desert: The Tabernas desert. Front Microbiol 11:583120. doi:10.3389/fmicb.2020.583120. PubMed DOI PMC
Sun J, Guo J, Yang Q, Huang J. 2019. Diluted conventional media improve the microbial cultivability from aquarium seawater. J Microbiol 57:759–768. doi:10.1007/s12275-019-9175-7. PubMed DOI
Imazaki I, Kobori Y. 2010. Improving the culturability of freshwater bacteria using FW70, a low-nutrient solid medium amended with sodium pyruvate. Can J Microbiol 56:333–341. doi:10.1139/w10-019. PubMed DOI
Řezanka T, Gharwalová L, Nováková G, Kolouchová I, Uhlík O, Sigler K. 2019. Kocuria bacterial isolates from radioactive springs of Jáchymov spa (Joachimsthal) as sources of polyunsaturated fatty acids. Lipids 54:177–187. doi:10.1002/lipd.12136. PubMed DOI
Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK. 2017. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:118. doi:10.1007/s13205-017-0762-1. PubMed DOI PMC
Narsing Rao MP, Dong Z-Y, Luo Z-H, Li M-M, Liu B-B, Guo S-X, Hozzein WN, Xiao M, Li W-J. 2021. Physicochemical and microbial diversity analyses of Indian Hot Springs. Front Microbiol 12:627200. doi:10.3389/fmicb.2021.627200. PubMed DOI PMC
Narayanan PK, Goodwin EH, Lehnert BE. 1997. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57:3963–3971. PubMed
Bladen CL, Kozlowski DJ, Dynan WS. 2012. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model. Radiat Res 178:499–503. doi:10.1667/RR3042.2. PubMed DOI PMC
Jamieson D. 1992. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681. doi:10.1128/jb.174.20.6678-6681.1992. PubMed DOI PMC
Emri T, Pócsi I, Szentirmai A. 1999. Analysis of the oxidative stress response of Penicillium chrysogenum to menadione. Free Radic Res 30:125–132. doi:10.1080/10715769900300131. PubMed DOI
Vatanaviboon P, Varaluksit T, Seeanukun C, Mongkolsuk S. 2002. Transaldolase exhibits a protective role against menadione toxicity in Xanthomonas campestris pv. phaseoli. Biochem Biophys Res Commun 297:968–973. doi:10.1016/s0006-291x(02)02329-x. PubMed DOI
Zhou A, He Z, Redding-Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q, Keasling JD, Stahl DA, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J. 2010. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 12:2645–2657. doi:10.1111/j.1462-2920.2010.02234.x. PubMed DOI
Love SK. 1951. Natural radioactivity of water. Ind Eng Chem 43:1541–1544. doi:10.1021/ie50499a024. DOI
Fonollosa E, Peñalver A, Borrull F, Aguilar C. 2016. Radon in spring waters in the south of Catalonia. J Environmental Radioactivity 151:275–281. doi:10.1016/j.jenvrad.2015.10.019. PubMed DOI
Girault F, Perrier F, Przylibski T. 2016. Radon-222 and radium-226 occurrence in water: a review, Radon, Health and Natural Hazards, vol 451, pp 131–154. The Geological Society of London, London, UK.
Ahmad ST, Almuhsin IA, Hamad WM. 2021. Radon activity concentrations in Jale and Mersaid warm water springs in Koya District, Kurdistan Region-Iraq. J Radioanal Nucl Chem 328:753–768. doi:10.1007/s10967-021-07725-9. DOI
Clark ML, Eddy-Miller CA. 1998. Radon in Ground Water in Seven Counties of Wyoming, pp 79 –98. US Geological Survey, Reston, Virginia. https://pubs.er.usgs.gov/publication/fs07998.
Inácio M, Soares S, Almeida P. 2017. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal. J Radiation Res and Applied Sciences 10:135–139. doi:10.1016/j.jrras.2017.02.002. DOI
Kozlowska B, Hetman A, Dorda J, Zipper W. 2001. Radon-enriched spring waters in the South of Poland. Science Direct 61:677–678. doi:10.1016/S0969-806X(01)00369-3. DOI
Ródenas C, Gómez J, Soto J, Maraver F. 2008. Natural radioactivity of spring water used as spas in Spain. J Radioanal Nucl Chem 277:625–630. doi:10.1007/s10967-007-7158-3. DOI
Heinicke J, Koch U, Hebert D, Martinelli G. 1995. Simultaneous measurements of radon and CO2 in water as a possible tool for earthquake prediction. Science Rev 16:295–303.
Andrews JN, Ford DJ, Hussain N, Trivedi D, Youngman MJ. 1989. Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim et Cosmochim Acta 53:1791–1802. doi:10.1016/0016-7037(89)90300-1. DOI
Anitori RP, Trott C, Saul DJ, Bergquist PL, Walter MR. 2002. A culture-independent survey of the bacterial community in a radon hot spring. Astrobiology 2:255–270. doi:10.1089/153110702762027844. PubMed DOI
Anitori RP, Trott C, Saul DJ, Bergquist PL, Walter MR. 2004. The microbial community of a radon hot spring, 2017/09/19 ed, vol 213, pp 374–380. Astronomical Society of the Pacific, San Francisco, U.S.
Enyedi NT, Anda D, Borsodi AK, Szabó A, Pál SE, Óvári M, Márialigeti K, Kovács-Bodor P, Mádl-Szőnyi J, Makk J. 2019. Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary). J Environ Radioact 203:8–17. doi:10.1016/j.jenvrad.2019.02.010. PubMed DOI
Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H. 2007. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73:259–270. doi:10.1128/AEM.01570-06. PubMed DOI PMC
Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L. 2013. Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One 8:e62901. doi:10.1371/journal.pone.0062901. PubMed DOI PMC
Song Z-Q, Chen J-Q, Jiang H-C, Zhou E-M, Tang S-K, Zhi X-Y, Zhang L-X, Zhang C-LL, Li W-J. 2010. Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296. doi:10.1007/s00792-010-0307-6. PubMed DOI
Beam JP, Jay ZJ, Kozubal MA, Inskeep WP. 2014. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951. doi:10.1038/ismej.2013.193. PubMed DOI PMC
Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376. doi:10.1128/JB.180.2.366-376.1998. PubMed DOI PMC
Lee KC-Y, Dunfield PF, Morgan XC, Crowe MA, Houghton KM, Vyssotski M, Ryan JLJ, Lagutin K, McDonald IR, Stott MB. 2011. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int J Syst Evol Microbiol 61:2482–2490. doi:10.1099/ijs.0.027235-0. PubMed DOI
Mori K, Sunamura M, Yanagawa K, Ishibashi J-i, Miyoshi Y, Iino T, Suzuki K-i, Urabe T. 2008. First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 from hot springs. Appl Environ Microbiol 74:6223–6229. doi:10.1128/AEM.01351-08. PubMed DOI PMC
Masoudzadeh N, Zakeri F, Lotfabad T, Sharafi H, Masoomi F, Zahiri HS, Ahmadian G, Noghabi KA. 2011. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J Hazard Mater 197:190–198. doi:10.1016/j.jhazmat.2011.09.075. PubMed DOI
Gholami M, Etemadifar Z, Bouzari M. 2015. Isolation a new strain of Kocuria rosea capable of tolerating extreme conditions. J Environ Radioact 144:113–119. doi:10.1016/j.jenvrad.2015.03.010. PubMed DOI
Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191. doi:10.1128/MMBR.00015-10. PubMed DOI PMC
Malkawi HI, Al-Omari MN. 2010. Culture-dependent and culture-independent approaches to study the bacterial and archaeal diversity from Jordanian hot springs. African J Microbiology Res 4:923–932.
Prakash O, Shouche Y, Jangid K, Kostka JE. 2013. Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51–62. doi:10.1007/s00253-012-4533-y. PubMed DOI
Cui Y, Chun S-J, Cho AR, Wong SK, Lee H-G, Oh H-M, Ahn C-Y. 2019. Nevskia lacus sp. nov., a gammaproteobacterium isolated from a eutrophic lake. Antonie Van Leeuwenhoek 112:723–729. doi:10.1007/s10482-018-1206-6. PubMed DOI
Sheu S-Y, Hsieh T-Y, Chen W-M. 2019. Aquincola rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 69:2226–2232. doi:10.1099/ijsem.0.003429. PubMed DOI
Lee SD, Joung Y, Cho JC. 2017. Phreatobacter stygius sp. nov., isolated from pieces of wood in a lava cave and emended description of the genus Phreatobacter. Int J Syst Evol Microbiol 67:3296–3300. doi:10.1099/ijsem.0.002106. PubMed DOI
Sen R, Maiti N. 2014. Genomic and functional diversity of bacteria isolated from hot springs in Odisha, India. Geomicrobiol J 31:541–550. doi:10.1080/01490451.2013.850560. DOI
Pedron R, Esposito A, Bianconi I, Pasolli E, Tett A, Asnicar F, Cristofolini M, Segata N, Jousson O. 2019. Genomic and metagenomic insights into the microbial community of a thermal spring. Microbiome 7:8. doi:10.1186/s40168-019-0625-6. PubMed DOI PMC
Bollmann A, Lewis K, Epstein SS. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390. doi:10.1128/AEM.01309-07. PubMed DOI PMC
Grivalský T, Bučková M, Puškárová A, Kraková L, Pangallo D. 2016. Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol Biotechnol 32:42. doi:10.1007/s11274-015-1997-9. PubMed DOI
Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, Alm EJ, Chakraborty R. 2020. Culturing of “unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol 11:610001. doi:10.3389/fmicb.2020.610001. PubMed DOI PMC
Cho J-C, Giovannoni SJ. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440. doi:10.1128/AEM.70.1.432-440.2004. PubMed DOI PMC
O'Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE. 2009. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35. doi:10.1007/s00248-009-9515-y. PubMed DOI
de Raad M, Li Y, Andeer P, Kosina SM, Saichek NR, Golini A, Wang Y, Bowen BP, Chakraborty R, Northen TR. 2021. A defined medium based on R2A for cultivation and exometabolite profiling of soil bacteria. bioRxiv. PubMed PMC
Jin L, Ko S-R, Ahn C-Y, Lee H-G, Oh H-M. 2016. Rhizobacter profundi sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 66:1926–1931. doi:10.1099/ijsem.0.000962. PubMed DOI
Hirose S, Tank M, Hara E, Tamaki H, Mori K, Takaichi S, Haruta S, Hanada S. 2020. Aquabacterium pictum sp. nov., the first aerobic bacteriochlorophyll a-containing fresh water bacterium in the genus Aquabacterium of the class Betaproteobacteria. Int J Syst Evol Microbiol 70:596–603. doi:10.1099/ijsem.0.003798. PubMed DOI
Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T. 2007. Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303. doi:10.1099/ijs.0.64663-0. PubMed DOI
Baek C, Shin SK, Yi H. 2018. Flavobacterium magnum sp. nov., Flavobacterium pallidum sp. nov., Flavobacterium crocinum sp. nov. and Flavobacterium album sp. nov. Int J Syst Evol Microbiol 68:3837–3843. doi:10.1099/ijsem.0.003067. PubMed DOI
Zhang G, Niu F, Busse H-J, Ma X, Liu W, Dong M, Feng H, An L, Cheng G. 2008. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 58:1215–1220. doi:10.1099/ijs.0.65588-0. PubMed DOI
Zhang H, Xu L, Zhang J-X, Sun J-Q. 2020. Sphingomonas suaedae sp. nov., a chitin-degrading strain isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 70:3816–3823. doi:10.1099/ijsem.0.004238. PubMed DOI
Lingens F, Blecher R, Blecher H, Blobel F, Eberspächer J, Fröhner C, Görisch H, Görisch H, Layh G. 1985. Phenylobacterium immobile gen. nov., sp. nov., a gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Evol Microbiol 35:26–39. doi:10.1099/00207713-35-1-26. DOI
Oh YS, Roh DH. 2012. Phenylobacterium muchangponense sp. nov., isolated from beach soil, and emended description of the genus Phenylobacterium. Int J Syst Evol Microbiol 62:977–983. doi:10.1099/ijs.0.028902-0. PubMed DOI
Spanner T, Ulrich A, Kublik S, Foesel BU, Kolb S, Horn MA, Behrendt U. 2021. Pseudomonas campi sp. nov., a nitrate-reducing bacterium isolated from grassland soil. Int J Syst Evol Microbiol 71 doi:10.1099/ijsem.0.004799. PubMed DOI
Zheng WT, Li Y, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007. doi:10.1099/ijs.0.044362-0. PubMed DOI
Bouraoui H, Aissa MB, Abbassi F, Touzel JP, O'donohue M, Manai M. 2012. Characterization of Deinococcus sahariens sp. nov., a radiation-resistant bacterium isolated from a Saharan hot spring. Arch Microbiol 194:315–322. doi:10.1007/s00203-011-0762-1. PubMed DOI
Asker D, Beppu T, Ueda K. 2007. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57:1435–1441. doi:10.1099/ijs.0.64828-0. PubMed DOI
Yang Q. 2021. Crucial roles of carotenoids as bacterial endogenous defense system for bacterial radioresistance of Deinococcus radiodurans. bioRxiv.
Brooks B, Murray R. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Evol Microbiol 31:353–360. doi:10.1099/00207713-31-3-353. DOI
Cox MM, Battista JR. 2005. Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3:882–892. doi:10.1038/nrmicro1264. PubMed DOI
Yun YS, Lee YN. 2003. Production of superoxide dismutase by Deinococcus radiophilus. J Biochemistry and Molecular Biology 36:282–287. doi:10.5483/BMBRep.2003.36.3.282. PubMed DOI
Meunier-Jamin C, Kapp U, Leonard GA, McSweeney S. 2004. The structure of the organic hydroperoxide resistance protein from Deinococcus radiodurans. Do conformational changes facilitate recycling of the redox disulfide? J Biol Chem 279:25830–25837. doi:10.1074/jbc.M312983200. PubMed DOI
Wood ZA, Poole LB, Karplus PA. 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653. doi:10.1126/science.1080405. PubMed DOI
Khairnar NP, Misra HS, Apte SK. 2003. Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun 312:303–308. doi:10.1016/j.bbrc.2003.10.121. PubMed DOI
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. 2014. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354. doi:10.1152/physrev.00040.2012. PubMed DOI PMC
Smirnova GV, Oktyabrsky ON. 2005. Glutathione in bacteria. Biochemistry (Mosc) 70:1199–1211. doi:10.1007/s10541-005-0248-3. PubMed DOI
Hu E-Z, Lan X-R, Liu Z-L, Gao J, Niu D-K. 2022. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 23:110. doi:10.1186/s12864-022-08353-7. PubMed DOI PMC
Liao C, Ayansola H, Ma Y, Ito K, Guo Y, Zhang B. 2021. Advances in enhanced menaquinone-7 production from Bacillus subtilis. Front Bioeng Biotechnol 9:695526. doi:10.3389/fbioe.2021.695526. PubMed DOI PMC
Walther B, Karl JP, Booth SL, Boyaval P. 2013. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473. doi:10.3945/an.113.003855. PubMed DOI PMC
Anderson AO, Nordon H, Cain RF, Parrish G, Duggan DE, Anderson AO, Nordan HC, Parish GT, Cullum-Dugan D. 1956. Studies on a radio-resistant Micrococcus. I. isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology 10:575–578.
Yoshinaka T, Yano K, Yamaguchi H. 1973. Isolation of highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agricultural and Biological Chemistry 37:2269–2275. doi:10.1080/00021369.1973.10861003. DOI
Terato H, Suzuki K, Nishioka N, Okamoto A, Shimazaki-Tokuyama Y, Inoue Y, Saito T. 2011. Characterization and radio-resistant function of manganese superoxide dismutase of Rubrobacter radiotolerans. J Radiat Res 52:735–742. doi:10.1269/jrr.11105. PubMed DOI
Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y. 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 188:411–419. doi:10.1007/s00203-007-0262-5. PubMed DOI
Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. doi:10.1038/nrmicro3032. PubMed DOI PMC
Imlay JA. 2003. Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938. PubMed DOI
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara J-P, Fleury MJJ. 2017. Microbial antioxidant defense enzymes. Microb Pathog 110:56–65. doi:10.1016/j.micpath.2017.06.015. PubMed DOI
Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD. 2017. Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol 123:798–809. doi:10.1111/jam.13509. PubMed DOI
Ighodaro OM, Akinloye OA. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Medicine 54:287–293. doi:10.1016/j.ajme.2017.09.001. DOI
Wan F, Feng X, Yin J, Gao H. 2021. Distinct H2O2-scavenging system in Yersinia pseudotuberculosis: KatG and AhpC act together to scavenge endogenous hydrogen peroxide. Front Microbiol 12:626874. doi:10.3389/fmicb.2021.626874. PubMed DOI PMC
Slade D, Lindner AB, Paul G, Radman M. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055. doi:10.1016/j.cell.2009.01.018. PubMed DOI
de Macedo Lemos EG, Alves LMC, Campanharo JC. 2003. Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol Lett 219:39–45. doi:10.1016/S0378-1097(02)01189-8. PubMed DOI
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10. doi:10.3389/fmicb.2019.00780. PubMed DOI PMC
Li S-J, Hua Z-S, Huang L-N, Li J, Shi S-H, Chen L-X, Kuang J-L, Liu J, Hu M, Shu W-S. 2014. Microbial communities evolve faster in extreme environments. Sci Rep 4:6205. doi:10.1038/srep06205. PubMed DOI PMC
Gabani P, Singh OV. 2013. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97:993–1004. doi:10.1007/s00253-012-4642-7. PubMed DOI
Soriano S, Walker N. 1968. Isolation of ammonia-oxidizing autotrophic bacteria. J Appl Bacteriol 31:493–497. doi:10.1111/j.1365-2672.1968.tb00397.x. PubMed DOI
Strejcek M, Smrhova T, Junkova P, Uhlik O. 2018. Whole-Cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol 9:1294. doi:10.3389/fmicb.2018.01294. PubMed DOI PMC
Lane D. 1991. 16S/23S rRNA sequencing, pp 115–175. In Stackebrandt E, Goodfellow M (eds.), Nucleic acid techniques in bacterial systematic. Wiley, New York, New York.
Thompson JR, Marcelino LA, Polz MF. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res 30:2083–2088. doi:10.1093/nar/30.9.2083. PubMed DOI PMC
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15. doi:10.1128/mSystems.00009-15. PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. doi:10.1093/molbev/msy096. PubMed DOI PMC
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755. PubMed DOI PMC
Wright ES. 2016. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R J 8:352–359. doi:10.32614/RJ-2016-025. DOI
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. doi:10.1099/ijsem.0.002516. PubMed DOI
Lopez-Echartea E, Suman J, Smrhova T, Ridl J, Pajer P, Strejcek M, Uhlik O. 2021. Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility. Genes, Genomes, Genetics 11. doi:10.1093/g3journal/jkaa030. PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. doi:10.1101/gr.215087.116. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi:10.1101/gr.186072.114. PubMed DOI PMC
Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY, Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia J-M, Chia J-M, Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E, Dubchak I, Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A, Gurtowski J, Haun HL, He F, Jain R, et al. . 2018. KBase: The United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569. doi:10.1038/nbt.4163. PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, 3rd, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi:10.1038/srep08365. PubMed DOI PMC
Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi:10.1093/nar/gkz943. PubMed DOI PMC
Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. doi:10.1007/s12275-018-8014-6. PubMed DOI
Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. doi:10.1007/s10482-017-0844-4. PubMed DOI
Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD, Clavel T. 2021. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. Isme Commun 1:16. doi:10.1038/s43705-021-00017-z. PubMed DOI PMC
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. doi:10.1093/bioinformatics/btu494. PubMed DOI PMC