Isolation and characterization of multiple-stress tolerant bacteria from radon springs

. 2024 ; 19 (3) : e0299532. [epub] 20240307

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38451953

Radon springs, characterized by their high concentrations of radon gas (Rn222), are extreme environments with unique physicochemical conditions distinct from conventional aquatic ecosystems. Our research aimed to investigate microbial life in radon springs, focusing on isolating extremophilic bacteria and assessing their resistance to adverse conditions. Our study revealed the prevalence of Actinomycetia species in the radon spring environment. We conducted various tests to evaluate the resistance of these isolates to oxidative stress, irradiation, desiccation, and metal ion content. These extremophilic bacteria showed overall higher resistance to these stresses compared to control strains. Lipidomic analysis was also employed to provide insights into the adaptive mechanisms of these bacteria which were found mainly in the correlations among individual clusters and changes in content of fatty acids (FA) as well as differences between content and type of FAs of environmental isolates and type strains.

Zobrazit více v PubMed

Itavaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. Geomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. Advances in Applied Microbiology, Vol 94. 2016;94:1–77. doi: 10.1016/bs.aambs.2015.12.001 WOS:000375605400001. PubMed DOI

Northup DE, Lavoie KH. Geomicrobiology of caves: A review. Geomicrobiology Journal. 2001;18(3):199–222. doi: 10.1080/01490450152467750 WOS:000170355100001. DOI

Hirayama H, Takai K, Inagaki F, Yamato Y, Suzuki M, Nealson KH, et al.. Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles. 2005;9(2):169–84. doi: 10.1007/s00792-005-0433-8 WOS:000228638400010. PubMed DOI

Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK. Archaeal diversity in waters from deep South African gold mines. Applied and Environmental Microbiology. 2001;67(12):5750–60. doi: 10.1128/AEM.67.21.5750-5760.2001 WOS:000172451800054. PubMed DOI PMC

Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A. Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles. 2004;8(2):151–64. doi: 10.1007/s00792-004-0374-7 WOS:000220683300008. PubMed DOI

Smith SL, Rizoulis A, West JM, Lloyd JR. The microbial ecology of a hyper-alkaline spring, and impacts of an alkali-tolerant community during sandstone batch and column experiments representative of a geological disposal facility for intermediate-level radioactive waste. Geomicrobiol J. 2016;33(6):455–67. doi: 10.1080/01490451.2015.1049677 WOS:000382366100001. DOI

Rizoulis A, Milodowski AE, Morris K, Lloyd JR. Bacterial diversity in the hyperalkaline Allas springs (Cyprus), a natural analogue for cementitious radioactive waste repository. Geomicrobiol J. 2016;33(2):73–84. doi: 10.1080/01490451.2014.961107 WOS:000374786000001. DOI

Suzuki S, Ishii S, Wu A, Cheung A, Tenney A, Wanger G, et al.. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci U S A. 2013;110(38):15336–41. doi: 10.1073/pnas.1302426110 WOS:000324495300051. PubMed DOI PMC

Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. Low-temperature extremophiles and their applications. Curr Opin Biotechnol. 2002;13(3):253–61. doi: 10.1016/s0958-1669(02)00317-8 WOS:000175903900011. PubMed DOI

Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, Co YNPMPS. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Frontiers in Microbiology. 2013;4. doi: 10.3389/fmicb.2013.00067 WOS:000331101500001. PubMed DOI PMC

Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, et al.. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Frontiers in Microbiology. 2013;4. doi: 10.3389/fmicb.2013.00095 WOS:000331111900001. PubMed DOI PMC

Lewis K, Epstein S, D’Onofrio A, Ling LL. Uncultured microorganisms as a source of secondary metabolites. Journal of Antibiotics. 2010;63(8):468–76. doi: 10.1038/ja.2010.87 WOS:000281499800009. PubMed DOI

Kapinusova G, Jani K, Smrhova T, Pajer P, Jarosova I, Suman J, et al.. Culturomics of bacteria from radon-saturated water of the world’s oldest radium mine. Microbiology Spectrum. 2022. doi: 10.1128/spectrum.01995-22 WOS:000844448600001. PubMed DOI PMC

Anitori RP, Trott C, Saul DJ, Bergquist PL, Walter MR. A culture-independent survey of the bacterial community in a radon hot spring. Astrobiology. 2002;2(3):255–70. doi: 10.1089/153110702762027844 WOS:000182464000004. PubMed DOI

Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Applied and Environmental Microbiology. 2007;73(1):259–70. doi: 10.1128/AEM.01570-06 WOS:000243394400029. PubMed DOI PMC

Máthé I, Táncsics A, György É, Pohner Z, Vladár P, Székely AJ, et al.. Iinvestigation of mineral water springs of Miercurea Ciuc (Csíkszereda) region (Romania) with cultivation-dependent microbiological methods. Acta Microbiologica Et Immunologica Hungarica. 2010;57(2):109–22. doi: 10.1556/AMicr.57.2010.2.4 WOS:000279240300004. PubMed DOI

Kamenova-Totzeva RM, Totzev AV, Kotova RM, Ivanova-Teneva GR. Quantitative and qualitative study of radon content in Bulgarian mineral waters. Radiation Protection Dosimetry. 2018;181(1):48–51. doi: 10.1093/rpd/ncy089 WOS:000446104900011. PubMed DOI

Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abdeldin I. Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. J Radioanal Nucl Chem. 2019;322(2):305–18. doi: 10.1007/s10967-019-06686-4 WOS:000493694600008. DOI

Piao CN, Tian M, Gao HJ, Gao YX, Ruan JL, Wu LN, et al.. Effects of radon from hot springs on lymphocyte subsets in peripheral blood. Dose-Response. 2020;18(1). doi: 10.1177/1559325820902338 WOS:000511180200001. PubMed DOI PMC

Ahmad N, Rehman J, Rehman JU, Nasar G. Assessments of 226Ra and 222Rn concentration in well and tap water from Sik, Malaysia, and consequent dose estimates. Human and Ecological Risk Assessment. 2019;25(7):1697–706. doi: 10.1080/10807039.2018.1559034 WOS:000486992200005. DOI

Etani R, Kataoka T, Kanzaki N, Sakoda A, Tanaka H, Ishimori Y, et al.. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. J Radiat Res. 2017;58(5):614–25. doi: 10.1093/jrr/rrx021 WOS:000413437700005. PubMed DOI PMC

Di Carlo C, Lepore L, Venoso G, Ampollini M, Carpentieri C, Tannino A, et al.. Radon concentration in self-bottled mineral spring waters as a possible public health issue. Sci Rep. 2019;9. doi: 10.1038/s41598-019-50472-x WOS:000488771400006. PubMed DOI PMC

Golias V, Hajkova L, Lipansky T, Cernik T, Kohn P, Jezek J, et al.. Exploration and investigation of high-level radon medicinal springs in the crystalline units: Lugicum. Water. 2022;14(2). doi: 10.3390/w14020200 WOS:000750760000001. DOI

Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. Manganese: elemental defence for a life with oxygen? Trends in Microbiology. 2002;10(11):496–501. doi: 10.1016/s0966-842x(02)02462-9 WOS:000179137300010. PubMed DOI

Krejbichova Z. Radioactivity of mineral waters in Bohemia. Czech J Phys. 1999;49:127–32. doi: 10.1007/s10582-999-0017-4 WOS:000080843300017. DOI

Millan F, Izere C, Breton V, Voldoire O, Biron DG, Wetzel CE, et al.. The effect of natural radioactivity on diatom communities in mineral springs. Botany Letters. 2020;167(1):95–113. doi: 10.1080/23818107.2019.1691051 WOS:000502044000001. DOI

Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol. 1998;170(5):319–30. doi: 10.1007/s002030050649 WOS:000076381700001. PubMed DOI

Kumar S, Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci. 2001;58(9):1216–33. doi: 10.1007/PL00000935 WOS:000171087100005. PubMed DOI PMC

Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems. 2005;1(1):5. doi: 10.1186/1746-1448-1-5 PubMed DOI PMC

Aerts J, Lauwers AM, Heinen W. Temperature-dependent lipid content and fatty acid composition of 3 thermophilic bacteria. Antonie Van Leeuwenhoek Journal of Microbiology. 1985;51(2):155–65. doi: 10.1007/bf02310009 WOS:A1985AQA9500004. PubMed DOI

Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology. 2015;6. doi: 10.3389/fmicb.2015.01209 WOS:000364426000001. PubMed DOI PMC

Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, et al.. Metagenomic analysis of hot springs in central India reveals hydrocarbon degrading thermophiles and pathways essential for survivalin extreme environments. Frontiers in Microbiology. 2017;7. doi: 10.3389/fmicb.2016.02123 WOS:000391154100001. PubMed DOI PMC

Battista JR. Against all odds: The survival strategies of Deinococcus radiodurans. Annual Review of Microbiology. 1997;51:203–24. doi: 10.1146/annurev.micro.51.1.203 WOS:A1997YA46700009. PubMed DOI

Gerbl FW, Weidler GW, Wanek W, Erhardt A, Stan-Lotter H. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Frontiers in Microbiology. 2014;5. doi: 10.3389/fmicb.2014.00225 WOS:000336087900001. PubMed DOI PMC

Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, et al.. Diversity and distribution of thermophilic bacteria in hot springs of pakistan. Microbial Ecology. 2017;74(1):116–27. doi: 10.1007/s00248-017-0930-1 WOS:000403255500012. PubMed DOI

Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al.. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304(5667):66–74. doi: 10.1126/science.1093857 WOS:000220567900037. PubMed DOI

Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Seneca J, et al.. Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Frontiers in Microbiology. 2019;10. doi: 10.3389/fmicb.2019.01018 WOS:000470126900001. PubMed DOI PMC

Ramos V, Morais J, Castelo-Branco R, Pinheiro A, Martins J, Regueiras A, et al.. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection. Journal of Applied Phycology. 2018;30(3):1437–51. doi: 10.1007/s10811-017-1369-y WOS:000433966200001. PubMed DOI PMC

Xie FY, Pathom-aree W. Actinobacteria from desert: diversity and biotechnological applications. Frontiers in Microbiology. 2021;12. doi: 10.3389/fmicb.2021.765531 WOS:000738112600001. PubMed DOI PMC

Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, et al.. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol. 2012;80(3):566–77. doi: 10.1111/j.1574-6941.2012.01320.x WOS:000303761900005. PubMed DOI

Gabani P, Singh OV. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol. 2013;97(3):993–1004. doi: 10.1007/s00253-012-4642-7 WOS:000314043300006. PubMed DOI

Suzuki K, Collins MD, Iijima E, Komagata K. Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett. 1988;52(1–2):33–9. doi: 10.1111/j.1574-6968.1988.tb02568.x WOS:A1988P310300007. DOI

Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, et al.. Rubrobacter xylanophilus sp. nov.: A new thermophilic species isolated from a thermally polluted effluent. International Journal of Systematic Bacteriology. 1996;46(2):460–5. doi: 10.1099/00207713-46-2-460 WOS:A1996UE64000015. DOI

Chen MY, Wu SH, Lin GH, Lu CP, Lin YT, Chang WC, et al.. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. International Journal of Systematic and Evolutionary Microbiology. 2004;54:1849–55. doi: 10.1099/ijs.0.63109-0 WOS:000224259100064. PubMed DOI

Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD, White DC, et al.. Kineococcus radiotolerans sp nov., a radiation-resistant, Gram-positive bacterium. International Journal of Systematic and Evolutionary Microbiology. 2002;52:933–8. doi: 10.1099/ijs.0.02029–0 WOS:000175824100034. PubMed DOI

Ernst R, Ejsing CS, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol. 2016;428(24):4776–91. doi: 10.1016/j.jmb.2016.08.013 WOS:000390517400005. PubMed DOI

Gupta R, Bhadauriya P, Chauhan VS, Bisen PS. Impact of UV-B radiation on thylakoid membrane and fatty acid profile of Spirulina platensis. Curr Microbiol. 2008;56(2):156–61. doi: 10.1007/s00284-007-9049-9 WOS:000252252600010. PubMed DOI

Aguilar PS, de Mendoza D. Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol. 2006;62(6):1507–14. doi: 10.1111/j.1365-2958.2006.05484.x WOS:000242236900002. PubMed DOI

Edgar RC, Soc IC. MUSCLE: Multiple sequence alignment with improved accuracy and speed. 2004 Ieee Computational Systems Bioinformatics Conference, Proceedings. 2004:728–9. WOS:000224127800148.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution. 2018;35(6):1547–9. doi: 10.1093/molbev/msy096 WOS:000441140000027. PubMed DOI PMC

Shukla M, Chaturvedi R, Tamhane D, Vyas P, Archana G, Apte S, et al.. Multiple-stress tolerance of ionizing radiation-resistant bacterial isolates obtained from various habitats: Correlation between stresses. Curr Microbiol. 2007;54(2):142–8. doi: 10.1007/s00284-006-0311-3 WOS:000243462300012. PubMed DOI

Gholami M, Etemadifar Z, Bouzari M. Isolation a new strain of Kocuria rosea capable of tolerating extreme conditions. J Environ Radioact. 2015;144:113–9. doi: 10.1016/j.jenvrad.2015.03.010 WOS:000355497300016. PubMed DOI

Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. Bmc Microbiology. 2015;15. doi: 10.1186/s12866-015-0376-x WOS:000350257800003. PubMed DOI PMC

Ou F, McGoverin C, Swift S, Vanholsbeeck F. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy. Analytical and Bioanalytical Chemistry. 2019;411(16):3653–63. doi: 10.1007/s00216-019-01848-5 WOS:000471727800020. PubMed DOI PMC

Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, et al.. Accumulation of Mn(II) in, Deinococcus radiodurans facilitates gamma-radiation resistance. Science. 2004;306(5698):1025–8. doi: 10.1126/science.1103185 WOS:000225001100041. PubMed DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 1959;37(8):911–7. WOS:A1959WM52500001. doi: 10.1139/o59-099 PubMed DOI

Dembitsky VM, Rezanka T, Rozentsvet OA. Lipid-composition of 3 macrophytes from the Caspian sea. Phytochemistry. 1993;33(5):1015–9. doi: 10.1016/0031-9422(93)85014-i WOS:A1993LQ43300013. DOI

Polyunsaturated Rezanka T. and unusual fatty-acids from slime-molds. Phytochemistry. 1993;33(6):1441–4. doi: 10.1016/0031-9422(93)85106-2 WOS:A1993LU77600031. DOI

Gholami M, Etemadifar Z. Isolation and characterization of a novel strain of genus Dietzia capable of multiple-extreme resistance. Microbiology. 2015;84(3):389–97. doi: 10.1134/s0026261715030054 WOS:000355876200011. DOI

Montero-Calasanz MD, Goker M, Broughton WJ, Cattaneo A, Favet J, Potter G, et al.. Geodermatophilus tzadiensis sp nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert. Systematic and Applied Microbiology. 2013;36(3):177–82. doi: 10.1016/j.syapm.2012.12.005 WOS:000320212000007. PubMed DOI

Asker D, Beppu T, Ueda K. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol. 2007;77(2):383–92. doi: 10.1007/s00253-007-1157-8 WOS:000250483900016. PubMed DOI

Asgarani E, Soudi MR, Borzooee F, Dabbagh R. Radio-resistance in psychrotrophic Kocuria sp. ASB 107 isolated from Ab-e-Siah radioactive spring. J Environ Radioact. 2012;113:171–6. doi: 10.1016/j.jenvrad.2012.04.009 WOS:000309087700023. PubMed DOI

Goodfellow M, Alderson G. Actinomycete genus Rhodococcus: Home for the Rhodochrous complex. Journal of General Microbiology. 1977;100(MAY):99–+. doi: 10.1099/00221287-100-1-99 WOS:A1977DH36000012. PubMed DOI

Nishiuchi Y, Baba T, Yano I. Mycolic acids from Rhodococcus, Gordonia, and Dietzia. Journal of Microbiological Methods. 2000;40(1):1–9. doi: 10.1016/s0167-7012(99)00116-5 WOS:000085845300001. PubMed DOI

Stackebrandt E, Smida J, Collins MD. Evidence of phylogenetic heterogeneity within the genus Rhodococcus: Revival of the genus Gordona (Tsukamura). J Gen Appl Microbiol. 1988;34(4):341–8. doi: 10.2323/jgam.34.341 WOS:A1988T608300004. DOI

Rainey FA, Klatte S, Kroppenstedt RM, Stackebrandt E. Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. International Journal of Systematic Bacteriology. 1995;45(1):32–6. doi: 10.1099/00207713-45-1-32 WOS:A1995QB87300006. PubMed DOI

Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology. 1995;45(4):682–92. doi: 10.1099/00207713-45-4-682 WOS:A1995RZ21600009. PubMed DOI

Kloos WE, Tornabene TG, Schleifer KH. Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. International Journal of Systematic Bacteriology. 1974;24(1):79–101. doi: 10.1099/00207713-24-1-79 WOS:A1974R929600010. DOI

Nouioui I, Carro L, Garcia-Lopez M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al.. Genome-based taxonomic classification of the phylum actinobacteria. Frontiers in Microbiology. 2018;9. doi: 10.3389/fmicb.2018.02007 WOS:000442371200001. PubMed DOI PMC

Cha S, Srinivasan S, Seo T, Kim MK. Deinococcus radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2014;105(1):229–35. doi: 10.1007/s10482-013-0069-0 WOS:000329293600022. PubMed DOI

Sghaier H, Ghedira K, Benkahla A, Barkallah I. Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BMC Genomics. 2008;9:7. doi: 10.1186/1471-2164-9-297 WOS:000257360500001. PubMed DOI PMC

Guesmi S, Pujic P, Nouioui I, Dubost A, Najjari A, Ghedira K, et al.. Ionizing-radiation-resistant Kocuria rhizophila PT10 isolated from the Tunisian Sahara xerophyte Panicum turgidum: Polyphasic characterization and proteogenomic arsenal. Genomics. 2021;113(1):317–30. doi: 10.1016/j.ygeno.2020.11.029 WOS:000613702500005. PubMed DOI

Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994;58(4):755–805. doi: 10.1128/mr.58.4.755-805.1994 WOS:A1994PV32400007. PubMed DOI PMC

Moker N, Kramer J, Unden G, Kramer R, Morbach S. In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum. Journal of Bacteriology. 2007;189(9):3645–9. doi: 10.1128/JB.01920-06 WOS:000246028400034. PubMed DOI PMC

Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J. 2001;20(7):1681–91. doi: 10.1093/emboj/20.7.1681 WOS:000167981400020. PubMed DOI PMC

Kuo V, Shoemaker WR, Muscarella ME, Lennon JT. Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714. Genome Announcements. 2017;5(32). doi: 10.1128/genomeA.00697-17 WOS:000460708500009. PubMed DOI PMC

Urbano SB, Albarracin V, Ordonez OF, Farias ME, Alvarez HM. Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp A5, a UV-resistant actinobacterium. Extremophiles. 2013;17(2):217–27. doi: 10.1007/s00792-012-0508-2 WOS:000315574600003. PubMed DOI

Rottig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbuchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. Journal of Biotechnology. 2016;225:48–56. doi: 10.1016/j.jbiotec.2016.03.040 WOS:000373562100009. PubMed DOI

Etemadifar Z, Gholami M, Derikvand P. UV-resistant bacteria with multiple-stress tolerance isolated from desert areas in Iran. Geomicrobiol J. 2016;33(7):592–8. doi: 10.1080/01490451.2015.1063025 WOS:000382365200005. DOI

Dapa T, Fleurier S, Bredeche MF, Matic I. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II. Genetics. 2017;206(3):1349–60. doi: 10.1534/genetics.116.199471 WOS:000404981600012. PubMed DOI PMC

Tomasz M. Mitomycin-C: small, fast, and deadly (but very selective). Chemistry & Biology. 1995;2(9):575–9. doi: 10.1016/1074-5521(95)90120-5 WOS:A1995RY33100002. PubMed DOI

Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. NATURE REVIEWS | Microbiology. 2009;7:8. doi: 10.1038/nrmicro2073 PubMed DOI

James K Fredrickson S-mWL, Gaidamakova Elena K, Matrosova Vera Y,, Min Zhai HMS, Scholten Johannes C, Brown Mindy G, et al.. Protein oxidation: key to bacterial desiccation resistance? The ISME Journal. 2008;2:393–403. doi: 10.1038/ismej.2007.116 PubMed DOI

Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, et al.. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5(4):769–79. doi: 10.1371/journal.pbio.0050092 WOS:000245901500010. PubMed DOI PMC

Kolouchová I, Mat’átková O, Sigler K, Masák J, Rezanka T. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiologica. 2016;61(5):431–8. doi: 10.1007/s12223-016-0454-y WOS:000381766100011. PubMed DOI

Rezanka T, Kolouchova I, Sigler K. Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. 2016;1861(11):1634–42. doi: 10.1016/j.bbalip.2016.07.005 WOS:000385325800005. PubMed DOI

Rahlwes KC, Sparks IL, Morita YS. Cell Walls and Membranes of Actinobacteria. In: Kuhn A, editor. Bacterial Cell Walls and Membranes. Subcellular Biochemistry. 92 2019. p. 417–69. doi: 10.1007/978-3-030-18768-2_13 PubMed DOI

Prithviraj M, Kado T, Mayfield JA, Young DC, Huang AD, Motooka D, et al.. Tuberculostearic acid controls mycobacterial membrane compartmentalization. Mbio. 2023. doi: 10.1128/mbio.03396-22 WOS:000957536100001. PubMed DOI PMC

Embley TM, Odonnell AG, Wait R, Rostron J. Lipid and cell-wall amino acid composition in the classification of members of the genus Deinococcus. Systematic and Applied Microbiology. 1987;10(1):20–7. doi: 10.1016/s0723-2020(87)80003-6 WOS:A1987L337700002. DOI

Kovacs G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). International Journal of Systematic Bacteriology. 1999;49:167–73. doi: 10.1099/00207713-49-1-167 WOS:000078176600017. PubMed DOI

Rezanka T, Kambourova M, Derekova A, Kolouchova I, Sigler K. LC-ESI-MS/MS identification of polar lipids of two thermophilic anoxybacillus bacteria containing a unique lipid pattern. Lipids. 2012;47(7):729–39. doi: 10.1007/s11745-012-3675-0 WOS:000306789400009. PubMed DOI

Kyselová L, Rezanka T. Stereochemistry of aminoacylated cardiolipins and phosphatidylglycerols from bacteria. Electrophoresis. 2023. doi: 10.1002/elps.202300165 WOS:001085978100001. PubMed DOI

Nussbaum E, Hursh JB. Radon solubility in fatty acids and triglycerides. Journal of Physical Chemistry. 1958;62(1):81–4. doi: 10.1021/j150559a021 WOS:A1958WK46700021. DOI

Sanjon EP, Maier A, Hinrichs A, Kraft G, Drossel B, Fournier C. A combined experimental and theoretical study of radon solubility in fat and water. Sci Rep. 2019;9. doi: 10.1038/s41598-019-47236-y WOS:000476874600066. PubMed DOI PMC

Baek K, Chung EJ, Choi GG, Kim MK, Lim S, Choi A. Deinococcus koreensis sp. nov., a gamma radiation-resistant bacterium isolated from river water. International Journal of Systematic and Evolutionary Microbiology. 2018;68(8):2545–50. doi: 10.1099/ijsem.0.002872 WOS:000440971600021. PubMed DOI

Lee JH, Jung JH, Kim MK, Lim S. Deinococcus taeanensis sp. nov., a radiation-resistant bacterium isolated from a coastal dune. Curr Microbiol. 2022;79(11). doi: 10.1007/s00284-022-03044-8 WOS:000858619200005. PubMed DOI PMC

Girard AE. Comparative study of fatty acids of some Micrococci. Canadian Journal of Microbiology. 1971;17(12):1503–&. doi: 10.1139/m71-240 WOS:A1971L415000003. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics

. 2025 Feb ; 70 (1) : 225-233. [epub] 20241217

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace