Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26931336
DOI
10.1007/s12223-016-0454-y
PII: 10.1007/s12223-016-0454-y
Knihovny.cz E-zdroje
- MeSH
- cytosol chemie MeSH
- dusík metabolismus MeSH
- fosfáty metabolismus MeSH
- kultivační média chemie MeSH
- kvasinky růst a vývoj metabolismus MeSH
- mastné kyseliny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- fosfáty MeSH
- kultivační média MeSH
- mastné kyseliny MeSH
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.
Zobrazit více v PubMed
Biotechnol Bioeng. 1993 Nov 20;42(10):1151-6 PubMed
Appl Microbiol Biotechnol. 2013 Jul;97(14):6581-8 PubMed
Nutr Rev. 1986 Apr;44(4):125-34 PubMed
Skin Pharmacol Appl Skin Physiol. 2003 May-Jun;16(3):176-87 PubMed
Bioresour Technol. 2013 Sep;143:18-24 PubMed
J Appl Microbiol. 2013 May;114(5):1357-68 PubMed
Appl Microbiol Biotechnol. 2004 Feb;63(6):635-46 PubMed
Bioresour Technol. 2009 Oct;100(20):4843-7 PubMed
Bioresour Technol. 2008 Sep;99(14 ):6488-93 PubMed
Exp Dermatol. 2003;12 Suppl 2:13-7 PubMed
Bioresour Technol. 2010 Aug;101(15):6124-9 PubMed
Adv Appl Microbiol. 2002;51:1-51 PubMed
Bioresour Technol. 2009 Nov;100(22):5461-5 PubMed
Bioresour Technol. 2012 May;111:398-403 PubMed
Bioresour Technol. 2013 Sep;144:360-9 PubMed
Nature. 2010 Jan 28;463(7280):559-62 PubMed
Bioresour Technol. 2008 May;99(8):3051-6 PubMed
Biochem Soc Trans. 1988 Dec;16(6):1088-91 PubMed
Can J Biochem Physiol. 1959 Aug;37(8):911-7 PubMed
J Biomed Biotechnol. 2012;2012:378384 PubMed
Annu Rev Biochem. 2011;80:859-83 PubMed
Water Sci Technol. 2013;67(8):1802-8 PubMed
Appl Environ Microbiol. 1977 Feb;33(2):231-9 PubMed
Curr Top Med Chem. 2009;9(6):504-38 PubMed
Bioresour Technol. 2002 Mar;82(1):43-9 PubMed
J Microbiol Biotechnol. 2007 Oct;17(10):1591-7 PubMed
J Sep Sci. 2013 Oct;36(20):3310-20 PubMed