Metabolism of Selected 2-Arylbenzofurans in a Colon In Vitro Model System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018100
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
34829035
PubMed Central
PMC8625357
DOI
10.3390/foods10112754
PII: foods10112754
Knihovny.cz E-zdroje
- Klíčová slova
- Caco-2 cells, LC-MS-Q-TOF, intestinal fermentation, moracin C, mulberrofuran G, mulberrofuran Y, permeability assay,
- Publikační typ
- časopisecké články MeSH
2-arylbenzofurans represent a small group of bioactive compounds found in the plant family Moraceae. As it has not been investigated whether these substances are stable during passage through the gastrointestinal tract, their biological effects may be altered by the metabolism of intestinal microbiota or cells. The aim of the present study was to investigate and compare mulberrofuran Y (1), moracin C (2), and mulberrofuran G (3) in an in vitro model of human intestinal bacterial fermentation and in an epithelial model using the Caco-2 cell line. The analysis of compounds by LC-MS-Q-TOF showed sufficient stability in the fermentation model, with no bacterial metabolites detected. However, great differences in the quantity of permeation were observed in the permeability assay. Moreover, mulberrofuran Y (1) and moracin C (2) were observed to be transformed into polar metabolites by conjugation. Among the test compounds, mulberrofuran Y (1) was mostly stable and accumulated in endothelial cells (85.3%) compared with mulberrofuran G (3) and moracin C (2) (14% and 8.2%, respectively). Thus, only a small amount of mulberrofuran Y (1) was conjugated. Moracin C (2) and mulberrofuran G (3) were metabolized almost completely, with only traces of the unchanged molecule being found on the apical and cellular sides of the system. Only conjugates of mulberrofuran Y (1) and moracin C (2) were able to reach the basolateral side. Our results provide the basic description of bioavailability of these three compounds, which is a necessary characteristic for final evaluation of bio-efficacy.
Zobrazit více v PubMed
Rivière C., Pawlus A.D., Mérillon J.M. Natural Stilbenoids: Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep. 2012;29:1317–1333. doi: 10.1039/c2np20049j. PubMed DOI
Dvorakova M., Landa P. Anti-Inflammatory Activity of Natural Stilbenoids: A Review. Pharmacol. Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI
Koca M., Servi S., Kirilmis C., Ahmedzade M., Kazaz C., Özbek B., Ötük G. Synthesis and Antimicrobial Activity of Some Novel Derivatives of Benzofuran: Part 1. Synthesis and Antimicrobial Activity of (Benzofuran-2-Yl)(3- Phenyl-3-Methylcyclobutyl) Ketoxime Derivatives. Eur. J. Med. Chem. 2005;40:1351–1358. doi: 10.1016/j.ejmech.2005.07.004. PubMed DOI
Nevagi R.J., Dighe S.N., Dighe S.N. Biological and Medicinal Significance of Benzofuran. Eur. J. Med. Chem. 2015;97:561–581. doi: 10.1016/j.ejmech.2014.10.085. PubMed DOI
Thévenin M., Thoret S., Grellier P., Dubois J. Synthesis of Polysubstituted Benzofuran Derivatives as Novel Inhibitors of Parasitic Growth. Bioorganic Med. Chem. 2013;21:4885–4892. doi: 10.1016/j.bmc.2013.07.002. PubMed DOI
Xie Y.S., Kumar D., Bodduri V.D.V., Tarani P.S., Zhao B.X., Miao J.Y., Jang K., Shin D.S. Microwave-Assisted Parallel Synthesis of Benzofuran-2-Carboxamide Derivatives Bearing Anti-Inflammatory, Analgesic and Antipyretic Agents. Tetrahedron Lett. 2014;55:2796–2800. doi: 10.1016/j.tetlet.2014.02.116. DOI
Xie F., Zhu H., Zhang H., Lang Q., Tang L., Huang Q., Yu L. In Vitro and in Vivo Characterization of a Benzofuran Derivative, a Potential Anticancer Agent, as a Novel Aurora B Kinase Inhibitor. Eur. J. Med. Chem. 2015;89:310–319. doi: 10.1016/j.ejmech.2014.10.044. PubMed DOI
Sohn H.Y., Son K.H., Kwon C.S., Kwon G.S., Kang S.S. Antimicrobial and Cytotoxic Activity of 18 Prenylated Flavonoids Isolated from Medicinal Plants: Morus alba L., Morus Mongolica Schneider, Broussnetia Papyrifera (L.) Vent, Sophora Flavescens Ait and Echinosophora Koreensis Nakai. Phytomedicine. 2004;11:666–672. doi: 10.1016/j.phymed.2003.09.005. PubMed DOI
Kimura Y., Okuda H., Nomura T., Fukai T., Arichi S. Effects of Phenolic Constituents from the Mulberry Tree on Arachidonate Metabolism in Rat Platelets. J. Nat. Prod. 1986;49:639–644. doi: 10.1021/np50046a013. PubMed DOI
Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus Alba and Morus Nigra. J. Nat. Prod. 2014;77:1297–1303. doi: 10.1021/np401025f. PubMed DOI
Yang Z.-G., Matsuzaki K., Takamatsu S., Kitanaka S. Inhibitory Effects of Constituents from Morus Alba Var. Multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules. 2011;16:6010–6022. doi: 10.3390/molecules16076010. PubMed DOI PMC
Nomura T. Phenolic Compounds of the Mulberry Tree and Related Plants. Fortschr. Chem. Org. Naturst. 1988;53:87–201. doi: 10.1007/978-3-7091-8987-0_2. PubMed DOI
Nomura T., Fukai T., Hano Y. Chemistry and biological activities of isoprenylated flavonoids from medicinal plants (moraceous plants and Glycyrrhiza species) Stud. Nat. Prod. Chem. 2003;41:173–176.
Duda-Chodak A., Tarko T., Satora P., Sroka P. Interaction of Dietary Compounds, Especially Polyphenols, with the Intestinal Microbiota: A Review. Eur. J. Nutr. 2015;54:325–341. doi: 10.1007/s00394-015-0852-y. PubMed DOI PMC
Tomás-Barberán F.A., Selma M.V., Espín J.C. Interactions of Gut Microbiota with Dietary Polyphenols and Consequences to Human Health. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:471–476. doi: 10.1097/MCO.0000000000000314. PubMed DOI
Espín J.C., González-Sarrías A., Tomás-Barberán F.A. The Gut Microbiota: A Key Factor in the Therapeutic Effects of (Poly)Phenols. Biochem. Pharmacol. 2017;72:247–256. doi: 10.1016/j.bcp.2017.04.033. PubMed DOI
Jarosova V., Doskocil I., Volstatova T., Havlik J. Adhesive Property of Different Strains of Lactobacilli in the Presence of Resveratrol. Sci. Agric. Bohem. 2018;49:291–296. doi: 10.2478/sab-2018-0036. DOI
Oberoi A.S., Philip L., Bhallamudi S.M. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B—Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds. Appl. Biochem. Biotechnol. 2015;176:1746–1769. doi: 10.1007/s12010-015-1692-1. PubMed DOI
Monna L., Omori T., Kodama T. Microbial Degradation of Dibenzofuran, Fluorene, and Dibenzo-p-Dioxin by Staphylococcus Auriculans DBF63. Appl. Environ. Microbiol. 1993;59:285–289. doi: 10.1128/aem.59.1.285-289.1993. PubMed DOI PMC
Seo J.-S., Keum Y.-S., Li Q.X. Bacterial Degradation of Aromatic Compounds. Int. J. Environ. Res. Public Health. 2009;6:278–309. doi: 10.3390/ijerph6010278. PubMed DOI PMC
Rechner A.R., Smith M.A., Kuhnle G., Gibson G.R., Debnam E.S., Srai S.K.S., Moore K.P., Rice-Evans C.A. Colonic Metabolism of Dietary Polyphenols: Influence of Structure on Microbial Fermentation Products. Free Radic. Biol. Med. 2004;36:212–225. doi: 10.1016/j.freeradbiomed.2003.09.022. PubMed DOI
Brill S.S., Furimsky A.M., Ho M.N., Furniss M.J., Li Y., Green A.G., Green C.E., Iyer L.v., Bradford W.W., Kapetanovic I.M. Glucuronidation of Trans-Resveratrol by Human Liver and Intestinal Microsomes and UGT Isoforms. J. Pharm. Pharmacol. 2006;58:469–479. doi: 10.1211/jpp.58.4.0006. PubMed DOI
Yang N., Sun R., Liao X., Aa J., Wang G. UDP-Glucuronosyltransferases (UGTs) and Their Related Metabolic Cross-Talk with Internal Homeostasis: A Systematic Review of UGT Isoforms for Precision Medicine. Pharmacol. Res. 2017;121:169–183. doi: 10.1016/j.phrs.2017.05.001. PubMed DOI
van de Wetering K., Burkon A., Feddema W., Bot A., de Jonge H., Somoza V., Borst P. Intestinal Breast Cancer Resistance Protein (BCRP)/Bcrp1 and Multidrug Resistance Protein 3 (MRP3)/Mrp3 Are Involved in the Pharmacokinetics of Resveratrol. Mol. Pharmacol. 2009;75:876–885. doi: 10.1124/mol.108.052019. PubMed DOI
Kaldas M.I., Walle U.K., Walle T. Resveratrol Transport and Metabolism by Human Intestinal Caco-2 Cells. J. Pharm. Pharmacol. 2003;55:307–312. doi: 10.1211/002235702612. PubMed DOI