Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-07-00129
Ministerstvo Zdravotnictví Ceské Republiky
16-12726S
Grantová Agentura České Republiky
PubMed
32503472
PubMed Central
PMC7275298
DOI
10.1186/s12885-020-07020-y
PII: 10.1186/s12885-020-07020-y
Knihovny.cz E-zdroje
- Klíčová slova
- L-asparaginase, cancer metabolism, fatty acid oxidation, glycolysis, leukemia, mitochondrial membrane potential, mitochondrial respiration, resistance,
- MeSH
- akutní lymfatická leukemie krev farmakoterapie patologie MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- asparaginasa farmakologie terapeutické užití MeSH
- biosyntetické dráhy účinky léků MeSH
- chemorezistence MeSH
- dítě MeSH
- glykolýza účinky léků MeSH
- kojenec MeSH
- kostní dřeň patologie MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolom účinky léků MeSH
- mitochondrie účinky léků metabolismus MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádorové buněčné linie MeSH
- oxidativní fosforylace účinky léků MeSH
- předškolní dítě MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- asparaginasa MeSH
BACKGROUND: Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in the overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs. METHODS: Altogether, 19 leukemia cell lines, primary leukemia cells from 26 patients and 2 healthy controls were used. Glycolytic function and mitochondrial respiration were measured using Seahorse Bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence. RESULTS: Using cell lines and primary patient samples we characterized the basal metabolic state of cells derived from different leukemia subtypes and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile. Lymphoid leukemia cell lines and patients sensitive to L-asparaginase clustered into the low glycolytic cluster. While lymphoid leukemia cells with lower sensitivity to L-asparaginase together with resistant normal mononuclear blood cells gathered into the high glycolytic cluster. Furthermore, we observed a correlation of specific metabolic parameters with the sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in the other cytostatic drugs tested by us. CONCLUSIONS: These data support that cell metabolism plays a prominent role in the treatment effect of L-asparaginase. Based on these findings, leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization could be identified by their metabolic profile.
Zobrazit více v PubMed
Creutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from study AML-BFM 2004. Blood. 2013;122(1):37–43. doi: 10.1182/blood-2013-02-484097. PubMed DOI
Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–184. doi: 10.1200/JCO.2013.48.6522. PubMed DOI
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–764. doi: 10.1038/nature05690. PubMed DOI
Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, DaSilva A, et al. Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia. Cancer Cell. 2013;24(6):766-76. PubMed PMC
Tzoneva G, Dieck CL, Oshima K, Ambesi-Impiombato A, Sánchez-Martín M, Madubata CJ, et al. Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature. 2018;553(7689):511–514. doi: 10.1038/nature25186. PubMed DOI PMC
Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nature Med. 2013;19(3):368–371. doi: 10.1038/nm.3078. PubMed DOI PMC
Hermanova I, Arruabarrena-Aristorena A, Valis K, Nuskova H, Alberich-Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30(1):209–218. doi: 10.1038/leu.2015.213. PubMed DOI
Tung S, Shi Y, Wong K, Zhu F, Gorczynski R, Laister RC, et al. PPARα and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood. 2013;122(6):969–980. doi: 10.1182/blood-2013-03-489468. PubMed DOI
Liang J, Shi P, Guo X, Li J, He L, Wang Y, et al. A retrospective comparison of Escherichia�coli and polyethylene glycol-conjugated asparaginase for the treatment of adolescents and adults with newly diagnosed acute lymphoblastic leukemia. Oncol Lett. 2017;15(1):75–82. PubMed PMC
Siegel SE, Stock W, Johnson RH, Advani A, Muffly L, Douer D, et al. Pediatric-Inspired Treatment Regimens for Adolescents and Young Adults With Philadelphia Chromosome–Negative Acute Lymphoblastic Leukemia. JAMA Oncol. 2018; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29450465. [cited 2018 Apr 18]. PubMed PMC
Woerden NLR, Pieters R, Loonen AH, Hubeek I, Van Drunen E, Beverloo HB, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96(3):1094–1099. PubMed
Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants. Leukemia. 1998;12(9):1344–1348. doi: 10.1038/sj.leu.2401129. PubMed DOI
Appel IM, Kazemier KM, Boos J, Lanvers C, Huijmans J, Veerman AJP, et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22(9):1665–1679. doi: 10.1038/leu.2008.165. PubMed DOI
Kim DH, Moldwin RL, Vignon C, Bohlander SK, Suto Y, Giordano L, et al. TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood. 1996;88(3):785–794. doi: 10.1182/blood.V88.3.785.785. PubMed DOI
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18(9):1350–1358. doi: 10.1038/nm.2882. PubMed DOI PMC
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim S-H, Mostoslavsky R, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. The EMBO J. 2007;26(7):1913–1923. doi: 10.1038/sj.emboj.7601633. PubMed DOI PMC
Hlozková K, Starková J. Assessment of the Metabolic Profile of Primary Leukemia Cells. Journal of Visualized Experiments. 2018;(141). Available from: https://www.jove.com/video/58426/assessment-of-the-metabolic-profile-of-primary-leukemia-cells. [cited 2019 Jun 21]. PubMed
Pejznochová M, Tesarová M, Honzík T, Hansíková H, Magner M, Zeman J. The developmental changes in mitochondrial DNA content per cell in human cord blood leukocytes during gestation. Physiol Res. 2008;57(6):947–955. PubMed
Hermanova I, Zaliova M, Trka J, Starkova J. Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp Hematol. 2012;40(8):657–665. doi: 10.1016/j.exphem.2012.04.005. PubMed DOI
Okada S, Hongo T, Yamada S, Watanabe C, Fujii Y, Ohzeki T, et al. In vitro efficacy of l-asparaginase in childhood acute myeloid leukaemia. Br J Haematol. 2003;123(5):802–809. Available from: http://doi.wiley.com/10.1046/j.1365-2141.2003.04703.x. [cited 2020 Apr 16]. PubMed DOI
Hung YP, Teragawa C, Kosaisawe N, Gillies TE, Pargett M, Minguet M, et al. Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. eLife. 2017;6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29239720. [cited 2019 Oct 8]. PubMed PMC
Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18(20):5546–5553. doi: 10.1158/1078-0432.CCR-12-0977. PubMed DOI PMC
Shin Y-K, Yoo BC, Chang HJ, Jeon E, Hong S-H, Jung M-S, et al. Down-regulation of Mitochondrial F 1 F 0 -ATP Synthase in Human Colon Cancer Cells with Induced 5-Fluorouracil Resistance. Cancer Res. 2005;65(8):3162–3170. doi: 10.1158/0008-5472.CAN-04-3300. PubMed DOI
Perry SW, Norman JP, Barbieri J, Brown EB, Harris A. Gradient : a Practical Usage Guide. Biotechniques. 2011;50(2):98–115. doi: 10.2144/000113610. PubMed DOI PMC
Rizzari C, Conter V, Starý J, Colombini A, Moericke A, Schrappe M. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25:S1–S9. doi: 10.1097/CCO.0b013e32835d7d85. PubMed DOI
Lorenzi PL, Reinhold WC, Rudelius M, Gunsior M, Shankavaram U, Bussey KJ, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther. 2006;5(11):2613–2623. doi: 10.1158/1535-7163.MCT-06-0447. PubMed DOI
Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554(7692):378–381. doi: 10.1038/nature25465. PubMed DOI PMC
Panosyan EH, Wang Y, Xia P, Lee W-NP, Pak Y, Laks DR, et al. Asparagine Depletion Potentiates the Cytotoxic Effect of Chemotherapy against Brain Tumors. Mol Cancer Res. 2014;12(5):694–702. doi: 10.1158/1541-7786.MCR-13-0576. PubMed DOI PMC
Yu M, Henning R, Walker A, Kim G, Perroy A, Alessandro R, et al. L-asparaginase inhibits invasive and angiogenic activity and induces autophagy in ovarian cancer. J Cell Mol Med. 2012;16(10):2369–2378. doi: 10.1111/j.1582-4934.2012.01547.x. PubMed DOI PMC