Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26239197
DOI
10.1038/leu.2015.213
PII: leu2015213
Knihovny.cz E-resources
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma drug therapy metabolism pathology MeSH
- Asparaginase therapeutic use MeSH
- Autophagy drug effects MeSH
- Humans MeSH
- Fatty Acids metabolism MeSH
- Monomeric GTP-Binding Proteins physiology MeSH
- Mechanistic Target of Rapamycin Complex 1 MeSH
- Multiprotein Complexes physiology MeSH
- Cell Line, Tumor MeSH
- Oxidation-Reduction MeSH
- Pyrimidines biosynthesis MeSH
- TOR Serine-Threonine Kinases physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Asparaginase MeSH
- Fatty Acids MeSH
- Monomeric GTP-Binding Proteins MeSH
- Mechanistic Target of Rapamycin Complex 1 MeSH
- Multiprotein Complexes MeSH
- Pyrimidines MeSH
- TOR Serine-Threonine Kinases MeSH
l-asparaginase (ASNase), a key component in the treatment of childhood acute lymphoblastic leukemia (ALL), hydrolyzes plasma asparagine and glutamine and thereby disturbs metabolic homeostasis of leukemic cells. The efficacy of such therapeutic strategy will depend on the capacity of cancer cells to adapt to the metabolic challenge, which could relate to the activation of compensatory metabolic routes. Therefore, we studied the impact of ASNase on the main metabolic pathways in leukemic cells. Treating leukemic cells with ASNase increased fatty-acid oxidation (FAO) and cell respiration and inhibited glycolysis. FAO, together with the decrease in protein translation and pyrimidine synthesis, was positively regulated through inhibition of the RagB-mTORC1 pathway, whereas the effect on glycolysis was RagB-mTORC1 independent. As FAO has been suggested to have a pro-survival function in leukemic cells, we tested its contribution to cell survival following ASNase treatment. Pharmacological inhibition of FAO significantly increased the sensitivity of ALL cells to ASNase. Moreover, constitutive activation of the mammalian target of rapamycin pathway increased apoptosis in leukemic cells treated with ASNase, but did not increase FAO. Our study uncovers a novel therapeutic option based on the combination of ASNase and FAO inhibitors.
CIC bioGUNE Technology Park of Bizkaia Derio Spain
Department of Biochemistry and Molecular biology University of the Basque Country Leioa Spain
Department of Biochemistry Charles University Prague Czech Republic
Ikerbasque Basque Foundation for Science Bilbao Spain
Metabolomics and Molecular Cell Biology Platforms; Gustave Roussy Villejuif France
Pôle de Biologie; Hôpital Européen Georges Pompidou; AP HP Paris France
Université Paris Descartes; Sorbonne Paris Cité Paris France
See more in PubMed
PLoS One. 2014 Dec 15;9(12):e115250 PubMed
Cancer Res. 1969 Jan;29(1):183-7 PubMed
Blood. 2007 Apr 1;109 (7):2744-50 PubMed
J Biol Chem. 1976 Jan 25;251(2):277-84 PubMed
Cell. 2005 Nov 18;123(4):569-80 PubMed
Genes Dev. 2004 Aug 15;18(16):1926-45 PubMed
Nat Cell Biol. 2008 Aug;10(8):935-45 PubMed
Blood. 1990 Dec 1;76(11):2327-36 PubMed
Science. 2013 Mar 15;339(6125):1320-3 PubMed
Nature. 2010 Dec 23;468(7327):1100-4 PubMed
Nature. 2009 Sep 3;461(7260):109-13 PubMed
Mol Cell. 2012 Aug 10;47(3):349-58 PubMed
J Clin Invest. 2012 Sep;122(9):3088-100 PubMed
Leukemia. 2006 Oct;20(10):1731-7 PubMed
Mol Syst Biol. 2014 May 05;10:728 PubMed
Pharmacol Rev. 2006 Sep;58(3):621-81 PubMed
Blood. 1997 Oct 1;90(7):2723-9 PubMed
Br J Haematol. 2001 Sep;114(4):794-9 PubMed
Nat Rev Cancer. 2013 Apr;13(4):227-32 PubMed
Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84 PubMed
Blood. 2011 Feb 10;117(6):1834-9 PubMed
Biochem Biophys Res Commun. 1999 Jul 5;260(2):534-9 PubMed
Blood. 2013 Nov 14;122(20):3521-32 PubMed
Leukemia. 2004 Mar;18(3):434-41 PubMed
Am J Pathol. 2012 Mar;180(3):895-903 PubMed
Cell. 2014 Dec 4;159(6):1263-76 PubMed
N Engl J Med. 2004 Aug 5;351(6):533-42 PubMed
Exp Hematol. 2012 Aug;40(8):657-65 PubMed
Nature. 2012 May 09;485(7400):661-5 PubMed
Cancer Cell. 2006 Jul;10 (1):51-64 PubMed
Cell Struct Funct. 1998 Feb;23(1):33-42 PubMed
Oncogene. 2013 Jan 24;32(4):453-61 PubMed
Cancer Res. 2009 Oct 1;69(19):7507-11 PubMed
Nat Med. 2012 Sep;18(9):1350-8 PubMed
Leukemia. 1999 Mar;13(3):335-42 PubMed
J Clin Invest. 2010 Jan;120(1):142-56 PubMed
Leukemia. 2013 Nov;27(11):2129-38 PubMed
PLoS One. 2013 Sep 11;8(9):e74623 PubMed
Metabolomics. 2014;10(5):909-919 PubMed
Nature. 2004 Sep 9;431(7005):200-5 PubMed
N Engl J Med. 2006 Jan 12;354(2):166-78 PubMed
Curr Biol. 2009 Dec 1;19(22):R1046-52 PubMed
Cancer Res. 2007 Jul 15;67(14):6745-52 PubMed
Nature. 2010 Jul 1;466(7302):68-76 PubMed
J Clin Invest. 2012 Dec;122(12):4490-504 PubMed
J Biol Chem. 2006 Dec 8;281(49):37372-80 PubMed
Science. 2009 May 22;324(5930):1029-33 PubMed
Cancer Res. 1970 Apr;30(4):929-35 PubMed
EMBO J. 2007 Apr 4;26(7):1913-23 PubMed
Ann Intern Med. 1971 Jun;74(6):893-901 PubMed
Mol Cancer Res. 2014 May;12 (5):694-702 PubMed
J Cell Mol Med. 2012 Oct;16(10):2369-78 PubMed
Cancer Res. 1970 Sep;30(9):2297-305 PubMed
Blood. 2007 Feb 1;109(3):896-904 PubMed
Science. 2008 Jun 13;320(5882):1496-501 PubMed
Cancer Res. 2005 Jan 1;65(1):291-9 PubMed
Blood. 2013 Aug 8;122(6):969-80 PubMed
Blood. 2014 Jun 5;123(23):3596-606 PubMed
Mol Cancer Ther. 2008 Oct;7(10):3123-8 PubMed
PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase
Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase
Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity
Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B