Restored biosynthetic pathways induced by MSCs serve as rescue mechanism in leukemia cells after L-asparaginase therapy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
24757
Cancer Research UK - United Kingdom
PubMed
36399517
PubMed Central
PMC10196988
DOI
10.1182/bloodadvances.2021006431
PII: 493249
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky * farmakologie terapeutické užití MeSH
- asparaginasa terapeutické užití MeSH
- biosyntetické dráhy MeSH
- leukemie * farmakoterapie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky * MeSH
- asparaginasa MeSH
[Figure: see text]
Zobrazit více v PubMed
Pui C, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–178. PubMed
Einsiedel HG, Von Stackelberg A, Hartmann R, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster group 87. J Clin Oncol. 2005;23(31):7942–7950. PubMed
Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a children’s oncology group study. Leukemia. 2008;22(12):2142–2150. PubMed PMC
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35(9):975–983. PubMed PMC
Tabe Y, Lorenzi PL, Konopleva M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood. 2019;134(13):1014–1023. PubMed PMC
Hermanova I, Arruabarrena-Aristorena A, Valis K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30(1):209–218. PubMed
Polak R, De Rooij B, Pieters R, den Boer ML. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood. 2015;126(21):2404–2414. PubMed
Ede BC, Asmaro RR, Moppett JP, Diamanti P, Blair A. Investigating chemoresistance to improve sensitivity of childhood T-cell acute lymphoblastic leukemia to parthenolide. Haematologica. 2018;103(9):1493–1501. PubMed PMC
Ehsanipour EA, Sheng X, Behan JW, et al. Adipocytes cause leukemia cell resistance to l-asparaginase via release of glutamine. Cancer Res. 2013;73(10):2998–3006. PubMed PMC
Pillozzi S, Masselli M, De Lorenzo E, et al. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 2011;117(3):902–914. PubMed
Sison EAR, Brown P. The bone marrow microenvironment and leukemia: biology and therapeutic targeting. Expert Rev Hematol. 2011;4(3):271–283. PubMed PMC
Ma L, Zong X. Metabolic symbiosis in chemoresistance: refocusing the role of Aerobic glycolysis. Front Oncol. 2020;10:1–8. PubMed PMC
Meyer LK, Hermiston ML. The bone marrow microenvironment as a mediator of chemoresistance in acute lymphoblastic leukemia. Cancer Drug Resist. 2019;2(4):1164–1177. PubMed PMC
Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B- lineage acute lymphoblastic leukemia. Blood. 1992;79(9):2370–2377. PubMed
Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117(4):1049–1057. PubMed PMC
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015;3:83–92. PubMed PMC
Fecteau JF, Messmer D, Zhang S, et al. Impact of oxygen concentration on growth of mesenchymal stromal cells from the marrow of patients with chronic lymphocytic leukemia. Blood. 2013;121(6):971–974. PubMed PMC
Adamo A, Delfino P, Gatti A, et al. HS-5 and HS-27A stromal cell lines to study bone marrow mesenchymal stromal cell-mediated support to cancer development. Front Cell Dev Biol. 2020;8 PubMed PMC
Cai J, Wang J, Huang Y, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis. 2016;7(11) e2459-11. PubMed PMC
Gonzalez-Manchon C, Parrilla R, Ayuso MS. Role of fatty acid in the control of protein synthesis in liver cells. Biochem Int. 1990;21(5):933–940. PubMed
Melick CH, Jewell JL. Regulation of mTORC1 by upstream stimuli. Genes (Basel) 2020;11(9):1–28. PubMed PMC
Robitaille AM, Christen S, Shimobayashi M, et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science. 2013;339(6125):1320–1323. PubMed
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–976. PubMed PMC
Krall AS, Xu S, Graeber TG, Braas D, Christofk HR. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7 PubMed PMC
Li J, Xue L, Hao H, et al. Rapamycin provides a therapeutic option through inhibition of mTOR signaling in chronic myelogenous leukemia. Oncol Rep. 2012;27(2):461–466. PubMed
Hellsten SV, Lekholm E, Ahmad T, Fredriksson R. The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation. FEBS Open Bio. 2017;7(2):249–264. PubMed PMC
Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab. 2013;304(8):E789–E799. PubMed PMC