Dynamic Python-Based Method Provides Quantitative Analysis of Intercellular Junction Organization During S. pneumoniae Infection of the Respiratory Epithelium
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
SC2 GM141988
NIGMS NIH HHS - United States
R21 AG071268
NIA NIH HHS - United States
PubMed
35755841
PubMed Central
PMC9230243
DOI
10.3389/fcimb.2022.865528
Knihovny.cz E-zdroje
- Klíčová slova
- adherens junctions, brightness normalization, image analysis, pneumonia, tight junctions,
- MeSH
- adhezní spoje MeSH
- mezibuněčné spoje metabolismus MeSH
- respirační sliznice MeSH
- Streptococcus pneumoniae * MeSH
- těsný spoj * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Many respiratory pathogens compromise epithelial barrier function during lung infection by disrupting intercellular junctions, such as adherens junctions and tight junctions, that maintain intercellular integrity. This includes Streptococcus pneumoniae, a leading cause of pneumonia, which can successfully breach the epithelial barrier and cause severe infections such as septicemia and meningitis. Fluorescence microscopy analysis on intercellular junction protein manipulation by respiratory pathogens has yielded major advances in our understanding of their pathogenesis. Unfortunately, a lack of automated image analysis tools that can tolerate variability in sample-sample staining has limited the accuracy in evaluating intercellular junction organization quantitatively. We have created an open source, automated Python computer script called "Intercellular Junction Organization Quantification" or IJOQ that can handle a high degree of sample-sample staining variability and robustly measure intercellular junction integrity. In silico validation of IJOQ was successful in analyzing computer generated images containing varying degrees of simulated intercellular junction disruption. Accurate IJOQ analysis was further confirmed using images generated from in vitro and in vivo bacterial infection models. When compared in parallel to a previously published, semi-automated script used to measure intercellular junction organization, IJOQ demonstrated superior analysis for all in vitro and in vivo experiments described herein. These data indicate that IJOQ is an unbiased, easy-to-use tool for fluorescence microscopy analysis and will serve as a valuable, automated resource to rapidly quantify intercellular junction disruption under diverse experimental conditions.
Department of Biological Sciences San Jose State University San Jose CA United States
Department of Biology University of Puerto Rico Cayey PR United States
Department of Molecular Biology and Microbiology Tufts University Boston MA United States
Graduate Program in Immunology Tufts Graduate School of Biomedical Sciences Boston MA United States
Zobrazit více v PubMed
Adams W., Bhowmick R., Bou Ghanem E. N., Wade K., Shchepetov M., Weiser J. N., et al. . (2020). Pneumolysin Induces 12-Lipoxygenase–Dependent Neutrophil Migration During Streptococcus Pneumoniae Infection. J. Immunol. 204, 101–111. doi: 10.4049/jimmunol.1800748 PubMed DOI PMC
Amieva M. R., Vogelmann R., Covacci A., Tompkins L. S., Nelson W. J., Falkow S. (2003). Disruption of the Epithelial Apical-Junctional Complex by Helicobacter Pylori CagA. Science. (80-.). 300, 1430–1434. doi: 10.1126/science.1081919.Disruption PubMed DOI PMC
Baschong W., Suetterlin R., Hubert Laeng R. (2001). Control of Autofluorescence of Archival Formaldehyde-Fixed, Paraffin-Embedded Tissue in Confocal Laser Scanning Microscopy (CLSM). J. Histochem. Cytochem. 49, 1565–1571. doi: 10.1177/002215540104901210 PubMed DOI
Bhowmick R., Tin Maung N. H., Hurley B. P., Ghanem E. B., Gronert K., McCormick B. A., et al. . (2013). Systemic Disease During Streptococcus Pneumoniae Acute Lung Infection Requires 12-Lipoxygenase–Dependent Inflammation. J. Immunol. 191, 5115–5123. doi: 10.4049/jimmunol.1300522 PubMed DOI PMC
Brezovjakova H., Tomlinson C., Mohd-Naim N., Swiatlowska P., Erasmus J. E., Huveneers S., et al. . (2019). Junction Mapper Is a Novel Computer Vision Tool to Decipher Cell-Cell Contact Phenotypes. Elife 8, e45413. doi: 10.7554/eLife.45413 PubMed DOI PMC
Brückner B. R., Janshoff A. (2018). Importance of Integrity of Cell-Cell Junctions for the Mechanics of Confluent MDCK II Cells. Sci. Rep. 8, 1–11. doi: 10.1038/s41598-018-32421-2 PubMed DOI PMC
Campbell H. K., Maiers J. L., and DeMali K. A. (2017). Interplay Between Tight Junctions & Adherens Junctions. Exp. Cell Res. 358, 39–44. doi: 10.1016/j.yexcr.2017.03.061 PubMed DOI PMC
Ganesan S., Comstock A. T., and Sajjan U. S. (2013). Barrier function of airway tract epithelium. Tissue Barriers 1, e24997. doi: 10.4161/tisb.24997 PubMed DOI PMC
Garcia M. A., Nelson W. J., Chavez N. (2018). Cell – Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb. Perspect. Biol 10, 1– 28. Availbale at: http://cshperspectives.cshlp.org/content/10/4/a029181. PubMed PMC
Gray K. M., Jung J. W., Inglut C. T., Huang H. C., Stroka K. M. (2020). Quantitatively Relating Brain Endothelial Cell-Cell Junction Phenotype to Global and Local Barrier Properties Under Varied Culture Conditions via the Junction Analyzer Program. Fluids Barriers CNS 17, 1–20. doi: 10.1186/s12987-020-0177-y PubMed DOI PMC
Hasan S., Kulkarni N., Asbjarnarson A., Linhartova I., Osicka R., Sebo P. (2018). Bordetella Pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect. Immun. 86, e00445–17. doi: 10.1128/IAI.00445-17 PubMed DOI PMC
Heijink I. H., Brandenburg S. M., Noordhoek J. A., Postma D. S., Slebos D. J., van Oosterhout A. J. M. (2010). Characterisation of Cell Adhesion in Airway Epithelial Cell Types Using Electric Cell-Substrate Impedance Sensing. Eur. Respir. J. 35, 894–903. doi: 10.1183/09031936.00065809 PubMed DOI
Inoshima I., Inoshima N., Wilke G., Powers M., Frank K., Wang Y., et al. . (2011). A Staphylococcus Aureus Pore-Forming Toxin Subverts the Activity of ADAM10 to Cause Lethal Infection. Nat. Med. 17, 1310–1314. doi: 10.1038/nm.2451 PubMed DOI PMC
Jacques L. C., Panagiotou S., Baltazar M., Senghore M., Khandaker S., Xu R., et al. . (2020). Increased Pathogenicity of Pneumococcal Serotype 1 Is Driven by Rapid Autolysis and Release of Pneumolysin. Nat. Commun. 11, 1–13. doi: 10.1038/s41467-020-15751-6 PubMed DOI PMC
Mathieu C., Mikaty G., Miller F., Lecuyer H., Bernard C., Bourdoulous S., et al. . (2009). Meningococcal Type IV Pili Recruit the Polarity Complex to Cross the Brain Endothelium. Science. (80-.). 325, 83–87. doi: 10.1126/science.1173196 PubMed DOI PMC
McNeil E., Capaldo C. T., Macara I. G. (2006). Zonula Occludens-1 Function in the Assembly of Tight Junctions in Madin-Darby Canine Kidney Epithelial Cells. Mol. Biol. Cell 17, 1922–1932. doi: 10.1091/mbc.E05 PubMed DOI PMC
Peter A., Fatykhova D., Kershaw O., Gruber A. D., Rueckert J., Neudecker J., et al. . (2017). Localization and Pneumococcal Alteration of Junction Proteins in the Human Alveolar–Capillary Compartment. Histochem. Cell Biol. 147, 707–719. doi: 10.1007/s00418-017-1551-y PubMed DOI
Putt K. K., Pei R., White H. M., Bolling B. W. (2017). Yogurt Inhibits Intestinal Barrier Dysfunction in Caco-2 Cells by Increasing Tight Junctions. Food Funct. 8, 406–414. doi: 10.1039/c6fo01592a PubMed DOI
Rayner C. F. J., Jackson A. D., Rutman A., Dewar A., Mitchell T. J., Andrew P. W., et al. . (1995). Interaction of Pneumolysin-Sufficient and -Deficient Isogenic Variants of Streptococcus Pneumoniae With Human Respiratory Mucosa. Infect. Immun. 63, 442–447. doi: 10.1128/iai.63.2.442-447.1995 PubMed DOI PMC
Reboud E., Bouillot S., Patot S., Béganton B., Attrée I., Huber P. (2017). Pseudomonas Aeruginosa ExlA and Serratia Marcescens ShlA Trigger Cadherin Cleavage by Promoting Calcium Influx and ADAM10 Activation. PloS Pathog. 13, 1–20. doi: 10.1371/journal.ppat.1006579 PubMed DOI PMC
Schilpp C., Lochbaum R., Braubach P., Jonigk D., Frick M., Dietl P., et al. . (2021). TGF-β1 Increases Permeability of Ciliated Airway Epithelia via Redistribution of Claudin 3 From Tight Junction Into Cell Nuclei. Pflugers Arch. Eur. J. Physiol. 473, 287–311. doi: 10.1007/s00424-020-02501-2 PubMed DOI PMC
Sun Y., Yu H., Zheng D., Cao Q., Wang Y., Harris D., et al. . (2011). Sudan Black B Reduces Autofluorescence in Murine Renal Tissue. Arch. Pathol. Lab. Med. 135, 1335–1342. doi: 10.5858/arpa.2010-0549-OA PubMed DOI
Takeichi M. (2014). Dynamic contacts: Rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410. doi: 10.1038/nrm3802 PubMed DOI
Terryn C., Sellami M., Fichel C., Diebold M. D., Gangloff S., Le Naour R., et al. . (2013). Rapid Method of Quantification of Tight-Junction Organization Using Image Analysis. Cytom Part A 83 A, 235–241. doi: 10.1002/cyto.a.22239 PubMed DOI
Troeger C., Blacker B., Khalil I. A., Rao P. C., Cao J., Zimsen S. R. M., et al. . (2018). Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Lower Respiratory Infections in 195 Countries 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1191–1210. doi: 10.1016/S1473-3099(18)30310-4 PubMed DOI PMC
Waters J. C. (2009). Accuracy and Precision in Quantitative Fluorescence Microscopy. J. Cell Biol. 185, 1135–1148. doi: 10.1083/jcb.200903097 PubMed DOI PMC
Zhang Y., Wang Y., Cao W. W., Ma K. T., Ji W., Han Z. W., et al. . (2018). Spectral Characteristics of Autofluorescence in Renal Tissue and Methods for Reducing Fluorescence Background in Confocal Laser Scanning Microscopy. J. Fluoresc. 28, 561–572. doi: 10.1007/s10895-018-2217-4 PubMed DOI
Zihni C., Mills C., Matter K., Balda M. S. (2016). Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580. doi: doi:10.1038/nrm.2016.80 PubMed DOI