Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma

. 2019 ; 9 () : 53. [epub] 20190222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30854332

Grantová podpora
P30 CA086862 NCI NIH HHS - United States
Z01 HD008735 Intramural NIH HHS - United States

Background: Pheochromocytoma and paraganglioma (PHEO/PGL) are rare neuroendocrine tumors which may cause potentially life-threatening complications, with about a third of cases found to harbor specific gene mutations. Thus, early diagnosis, treatment, and meticulous monitoring are of utmost importance. Because of low incidence of succinate dehydrogenase complex subunit A (SDHA)-related metastatic PHEO/PGL, currently there exists insufficient clinical information, especially with regards to its diagnostic and treatment characteristics. Methods: Ten patients with SDHA-related metastatic PHEO/PGL were followed-up prospectively and/or retrospectively between January 2010-July 2018. They underwent biochemical tests (n = 10), 123I-MIBG (n = 9) scintigraphy, and multiple whole-body positron emission tomography/computed tomography (PET/CT) scans with 68Ga-DOTATATE (n = 10), 18F-FDG (n = 10), and 18F-FDOPA (n = 6). Results: Our findings suggest that these tumors can occur early and at extra-adrenal locations, behave aggressively, and have a tendency to develop metastatic disease within a short period of time. None of our patients had a family history of PHEO/PGL, making them appear sporadic. Nine out of 10 patients showed abnormal PHEO/PGL-specific biochemical markers with predominantly noradrenergic and/or dopaminergic phenotype, suggesting their utility in diagnosing and monitoring the disease. Per patient detection rates of 68Ga-DOTATATE (n = 10/10), 18F-FDG (n = 10/10), 18F-FDOPA (n = 5/6) PET/CT, and 123I-MIBG (n = 7/9) scintigraphy were 100, 100, 83.33, and 77.77%, respectively. Five out of 7 123I-MIBG positive patients had minimal 123I-MIBG avidity or detected very few lesions compared to widespread metastatic disease on 18F-FDG PET/CT, implying that diagnosis and treatment with 123/131I-MIBG is not a good option. 68Ga-DOTATATE PET/CT was found to be superior or equal to 18F-FDG PET/CT in 7 out of 10 patients and hence, is recommended for evaluation and follow-up of these patients. All 7 out of 7 patients who received conventional therapies (chemotherapy, somatostatin analog therapy, radiation therapy, 131I-MIBG, peptide receptor radionuclide therapy) in addition to surgery showed disease progression. Conclusion: In our cohort of patients, SDHA-related metastatic PHEO/PGL followed a disease-course similar to that of SDHB-related metastatic PHEO/PGL, showing highly aggressive behavior, similar imaging and biochemical phenotypes, and suboptimal response to conventional therapies. Therefore, we recommend careful surveillance of the affected patients and a search for effective therapies.

Clinical Endocrine Section National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD United States

Department of Nuclear Medicine La Timone University Hospital Aix Marseille University Marseille France

Department of Pediatrics RJ and LA Carver College of Medicine University of Iowa Iowa City IA United States

Division of Cancer Treatment and Diagnosis National Cancer Institute National Institutes of Health Bethesda MD United States

Endocrine Oncology Branch Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda MD United States

Mitochondria Apoptosis and Cancer Research Group School of Medical Science Menzies Health Institute Queensland Griffith University Southport QLD Australia

Molecular Therapy Group Institute of Biotechnology Czech Academy of Sciences Prague Czechia

Neuroendocrine Tumor Program Division of Endocrinology and Metabolism Department of Medicine Holden Comprehensive Cancer Center The University of Iowa Iowa City IA United States

Nuclear Medicine Division Radiology and Imaging Sciences Warren Grant Magnuson Clinical Center National Institutes of Health Bethesda MD United States

Nuclear Medicine Radiology and Radiological Science Johns Hopkins Medicine Baltimore MD United States

Positron Emission Tomography Department Warren Grant Magnuson Clinical Center National Institutes of Health Bethesda MD United States

Radiology and Imaging Sciences Warren Grant Magnuson Clinical Center National Institutes of Health Bethesda MD United States

Section of Diabetes Endocrinology and Metabolism Department of Medicine University of Santo Tomas Hospital Manila Philippines

Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD United States

Section on Medical Neuroendocrinology Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD United States

Zobrazit více v PubMed

Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer (2014) 14:108–19. 10.1038/nrc3648 PubMed DOI

Eng C. Mendelian genetics of rare–and not so rare–cancers. Ann NY Acad Sci. (2010) 1214:70–82. 10.1111/j.1749-6632.2010.05789.x PubMed DOI

Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. . Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. (2017) 31:181–93. 10.1016/j.ccell.2017.01.001 PubMed DOI PMC

Jafri M, Maher ER. The genetics of phaeochromocytoma: using clinical features to guide genetic testing. Eur J Endocrinol. (2012) 166:151–8. 10.1530/EJE-11-0497 PubMed DOI

Karasek D, Frysak Z, Pacak K. Genetic testing for pheochromocytoma. Curr Hypertens Rep. (2010) 12:456–64. 10.1007/s11906-010-0151-1 PubMed DOI PMC

Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial complex II: at the crossroads. Trends Biochem Sci. (2017) 42:312–25. 10.1016/j.tibs.2017.01.003 PubMed DOI PMC

Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. . Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science (2000) 287:848–51. 10.1126/science.287.5454.848 PubMed DOI

Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, et al. . SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. (2010) 19:3011–20. 10.1093/hmg/ddq206 PubMed DOI PMC

Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, et al. . Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab. (2013) 98:E1103–8. 10.1210/jc.2013-1400 PubMed DOI

Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. (2015) 11:101–11. 10.1038/nrendo.2014.188 PubMed DOI

Kantorovich V, King KS, Pacak K. SDH-related pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. (2010) 24:415–24. 10.1016/j.beem.2010.04.001 PubMed DOI PMC

Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, et al. . SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. (2011) 96:E1472–6. 10.1210/jc.2011-1043 PubMed DOI

Papathomas TG, Gaal J, Corssmit EP, Oudijk L, Korpershoek E, Heimdal K, et al. . Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol. (2014) 170:1–12. 10.1530/EJE-13-0623 PubMed DOI

Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, et al. . Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA (2005) 294:2057–63. 10.1001/jama.294.16.2057 PubMed DOI

Timmers HJLM, Pacak K. Familial pheochromocytomas and paragangliomas associated with mutations of the succinate dehydrogenase genes. Expert Rev Endocrinol Metabol. (2007) 2:399–406. 10.1586/17446651.2.3.399 PubMed DOI

Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H, et al. . Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry (2006) 77:74–6. 10.1136/jnnp.2005.067041 PubMed DOI PMC

Benn DE, Robinson BG, Clifton-Bligh RJ. 15 years of paraganglioma: clinical manifestations of paraganglioma syndromes types 1-5. Endocr Relat Cancer (2015) 22:T91–103. 10.1530/ERC-15-0268 PubMed DOI PMC

Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, et al. . Molecular Subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol. (2016) 2:922–8. 10.1001/jamaoncol.2016.0256 PubMed DOI PMC

Denes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, et al. . Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab. (2015) 100:E531–41. 10.1210/jc.2014-3399 PubMed DOI PMC

Dubard Gault M, Mandelker D, DeLair D, Stewart CR, Kemel Y, Sheehan MR, et al. . Germline SDHA mutations in children and adults with cancer. Cold Spring Harb Mol Case Stud. (2018) 4:a002584. 10.1101/mcs.a002584 PubMed DOI PMC

Evenepoel L, Papathomas TG, Krol N, Korpershoek E, de Krijger RR, Persu A, et al. . Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations. Genet Med. (2015) 17:610–20. 10.1038/gim.2014.162 PubMed DOI

Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet. (2012) 205:1–11. 10.1016/j.cancergen.2012.01.009 PubMed DOI PMC

Gill AJ, Toon CW, Clarkson A, Sioson L, Chou A, Winship I, et al. . Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol. (2014) 38:560–6. 10.1097/PAS.0000000000000149 PubMed DOI PMC

Jiang Q, Zhang Y, Zhou YH, Hou YY, Wang JY, Li JL, et al. . A novel germline mutation in SDHA identified in a rare case of gastrointestinal stromal tumor complicated with renal cell carcinoma. Int J Clin Exp Pathol. (2015) 8:12188–97. Available online at: https://www.ncbi.nlm.nih.gov/pubmed/26722403 PubMed PMC

Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, et al. . Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol. (2013) 37:234–40. 10.1097/PAS.0b013e3182671178 PubMed DOI PMC

Welander J, Garvin S, Bohnmark R, Isaksson L, Wiseman RW, Soderkvist P, et al. . Germline SDHA mutation detected by next-generation sequencing in a young index patient with large paraganglioma. J Clin Endocrinol Metab. (2013) 98:E1379–80. 10.1210/jc.2013-1963 PubMed DOI

Yakirevich E, Ali SM, Mega A, McMahon C, Brodsky AS, Ross JS, et al. . A novel SDHA-deficient renal cell carcinoma revealed by comprehensive genomic profiling. Am J Surg Pathol. (2015) 39:858–63. 10.1097/PAS.0000000000000403 PubMed DOI

Hensen EF, Bayley JP. Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer (2011) 10:355–63. 10.1007/s10689-010-9402-1 PubMed DOI PMC

Tufton N, Ghelani R, Srirangalingam U, Kumar AV, Drake WM, Iacovazzo D, et al. . SDHA mutated paragangliomas may be at high risk of metastasis. Endocr Relat Cancer (2017) 24:L43–L9. 10.1530/ERC-17-0030 PubMed DOI

Raygada M, King KS, Adams KT, Stratakis CA, Pacak K. Counseling patients with succinate dehydrogenase subunit defects: genetics, preventive guidelines, and dealing with uncertainty. J Pediatr Endocrinol Metab. (2014) 27:837–44. 10.1515/jpem-2013-0369 PubMed DOI PMC

Bausch B, Schiavi F, Ni Y, Welander J, Patocs A, Ngeow J, et al. . Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncol. (2017) 3:1204–12. 10.1001/jamaoncol.2017.0223 PubMed DOI PMC

Casey RT, Ascher DB, Rattenberry E, Izatt L, Andrews KA, Simpson HL, et al. . SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Mol Genet Genomic Med. (2017) 5:237–50. 10.1002/mgg3.279 PubMed DOI PMC

Casey RT, Challis BG, Marker A, Pitfield D, Cheow HK, Shaw A, et al. . A case of a metastatic SDHA mutated paraganglioma re-presenting twenty-three years after initial surgery. Endocr Relat Cancer (2017) 24:L69–L71. 10.1530/ERC-17-0206 PubMed DOI PMC

Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F, Tischler AS, et al. . SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol. (2015) 28:807–21. 10.1038/modpathol.2015.41 PubMed DOI

van der Tuin K, Mensenkamp AR, Tops CMJ, Corssmit EPM, Dinjens WN, van de Horst-Schrivers AN, et al. . Clinical aspects of SDHA-related pheochromocytoma and paraganglioma: a nationwide study. J Clin Endocrinol Metab. (2018) 103:438–45. 10.1210/jc.2017-01762 PubMed DOI

Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. . Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. (2014) 99:1915–42. 10.1210/jc.2014-1498 PubMed DOI

Alrashdi I, Bano G, Maher ER, Hodgson SV. Carney triad versus carney stratakis syndrome: two cases which illustrate the difficulty in distinguishing between these conditions in individual patients. Fam Cancer (2010) 9:443–7. 10.1007/s10689-010-9323-z PubMed DOI

Carney JA, Stratakis CA. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet. (2002) 108:132–9. 10.1002/ajmg.10235 PubMed DOI

Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, et al. . Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. (2004) 74:153–9. 10.1086/381054 PubMed DOI PMC

Maniam P, Zhou K, Lonergan M, Berg JN, Goudie DR, Newey PJ. Pathogenicity and penetrance of germline SDHA variants in pheochromocytoma and paraganglioma (PPGL). J Endocr Soc. (2018) 2:806–16. 10.1210/js.2018-00120 PubMed DOI PMC

Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic D, et al. . Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer (2012) 48:1739–49. 10.1016/j.ejca.2011.07.016 PubMed DOI PMC

Eisenhofer G, Pacak K, Huynh TT, Qin N, Bratslavsky G, Linehan WM, et al. . Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr Relat Cancer (2011) 18:97–111. 10.1677/ERC-10-0211 PubMed DOI PMC

Eisenhofer G, Siegert G, Kotzerke J, Bornstein SR, Pacak K. Current progress and future challenges in the biochemical diagnosis and treatment of pheochromocytomas and paragangliomas. Horm Metab Res. (2008) 40:329–37. 10.1055/s-2008-1073156 PubMed DOI PMC

Zuber S, Wesley R, Prodanov T, Eisenhofer G, Pacak K, Kantorovich V. Clinical utility of chromogranin A in SDHx-related paragangliomas. Eur J Clin Invest (2014) 44:365–71. 10.1111/eci.12245 PubMed DOI

Fonte JS, Robles JF, Chen CC, Reynolds J, Whatley M, Ling A, et al. . False-negative (1)(2)(3)I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer (2012) 19:83–93. 10.1530/ERC-11-0243 PubMed DOI PMC

Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, Herscovitch P, et al. Superiority of [68Ga]-DOTATATE PET/CT to other functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. (2015) 21:3888–95. 10.1158/1078-0432.CCR-14-2751 PubMed DOI PMC

Taieb D, Pacak K. New insights into the nuclear imaging phenotypes of cluster 1 pheochromocytoma and paraganglioma. Trends Endocrinol Metab. (2017) 28:807–17. 10.1016/j.tem.2017.08.001 PubMed DOI PMC

Duet M, Guichard JP, Rizzo N, Boudiaf M, Herman P, Tran Ba Huy P. Are somatostatin analogs therapeutic alternatives in the management of head and neck paragangliomas? Laryngoscope (2005) 115:1381–4. 10.1097/01.MLG.0000165806.99675.A9 PubMed DOI

van Hulsteijn LT, van Duinen N, Verbist BM, Jansen JC, van der Klaauw AA, Smit JW, et al. . Effects of octreotide therapy in progressive head and neck paragangliomas: case series. Head Neck (2013) 35:E391–6. 10.1002/hed.23348 PubMed DOI

Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. (2014) 371:224–33. 10.1056/NEJMoa1316158 PubMed DOI

Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. . Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. (2009) 27:4656–63. 10.1200/JCO.2009.22.8510 PubMed DOI

Tena I, Ponce JL, Tajahuerce M, Vercher-Conejero JL, Cifrián M, Wolf KI, et al. Successful induction therapy with sequential CVD followed by high-dose lanreotide in for metastatic SDHB paraganglioma: case report. J Clin Transl Endocrinol. (2018) 7:8–13. 10.1016/j.jecr.2017.12.001 DOI

Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. Repurposing drugs in oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience (2016) 10:680. 10.3332/ecancer.2016.680 PubMed DOI PMC

Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, et al. . Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget (2011) 2:797–809. 10.18632/oncotarget.343 PubMed DOI PMC

Tena I, Gupta G, Tajahuerce M, Benavent M, Cifrian M, Falcon A, et al. . Successful second-line metronomic temozolomide in metastatic paraganglioma: case reports and review of the literature. Clin Med Insights Oncol. (2018) 12:1179554918763367. 10.1177/1179554918763367 [Epub ahead of print]. PubMed DOI PMC

Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth K, et al. . Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. (2006) 91:827–36. 10.1210/jc.2005-1862 PubMed DOI

Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. (2005) 23:8812–8. 10.1200/JCO.2005.03.1484 PubMed DOI

Brouwers FM, Eisenhofer G, Tao JJ, Kant JA, Adams KT, Linehan WM, et al. . High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. (2006) 91:4505–9. 10.1210/jc.2006-0423 PubMed DOI

Brouwers FM, Petricoin EF, 3rd,, Ksinantova L, Breza J, Rajapakse V, Ross S, et al. . Low molecular weight proteomic information distinguishes metastatic from benign pheochromocytoma. Endocr Relat Cancer (2005) 12:263–72. 10.1677/erc.1.00913 PubMed DOI

Hamidi O, Young WF Jr, Iniguez-Ariza NM, Kittah NE, Gruber L, Bancos C, et al. Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J Clin Endocrinol Metab. (2017) 102:3296–305. 10.1210/jc.2017-00992 PubMed DOI PMC

Turkova H, Prodanov T, Maly M, Martucci V, Adams K, Widimsky J Jr, et al. . Characteristics and outcomes of metastatic sdhb and sporadic pheochromocytoma/paraganglioma: an National Institutes of health study. Endocr Pract. (2016) 22:302–14. 10.4158/EP15725.OR PubMed DOI PMC

Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, et al. . Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. (2013) 15:356–71. 10.1007/s11912-013-0320-x PubMed DOI

Shuch B, Ricketts CJ, Metwalli AR, Pacak K, Linehan WM. The genetic basis of pheochromocytoma and paraganglioma: implications for management. Urology (2014) 83:1225–32. 10.1016/j.urology.2014.01.007 PubMed DOI PMC

Buffet A, Venisse A, Nau V, Roncellin I, Boccio V, Le Pottier N, et al. . A decade (2001-2010) of genetic testing for pheochromocytoma and paraganglioma. Horm Metab Res. (2012) 44:359–66. 10.1055/s-0032-1304594 PubMed DOI

Cascon A, Pita G, Burnichon N, Landa I, Lopez-Jimenez E, Montero-Conde C, et al. . Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab. (2009) 94:1701–5. 10.1210/jc.2008-2756 PubMed DOI

Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res. (2012) 44:328–33. 10.1055/s-0031-1301302 PubMed DOI

Mannelli M, Castellano M, Schiavi F, Filetti S, Giacche M, Mori L, et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or non-functional paragangliomas. J Clin Endocrinol Metab. (2009) 94:1541–7. 10.1210/jc.2008-2419 PubMed DOI

Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, et al. . Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. (2002) 346:1459–66. 10.1056/NEJMoa020152 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...