Stereochemistry of aminoacylated cardiolipins and phosphatidylglycerols from bacteria
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO61388971
Institute of Microbiology, Prague, Czech Republic
MZE-RO1923
Ministry of Agriculture of the Czech Republic
PubMed
37860988
DOI
10.1002/elps.202300165
Knihovny.cz E-zdroje
- Klíčová slova
- HILIC, achiral chromatography, amino acids, aminoacylated cardiolipins, aminoacylated phosphatidylglycerols,
- MeSH
- aminokyseliny chemie analýza MeSH
- Bacteria chemie MeSH
- chromatografie kapalinová metody MeSH
- fosfatidylglyceroly * chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- kardiolipiny * chemie analýza MeSH
- stereoizomerie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- fosfatidylglyceroly * MeSH
- kardiolipiny * MeSH
Hydrophilic interaction liquid chromatography (HILIC) connected with electrospray high-resolution tandem mass spectrometry (MS) was used for the analysis of unusual amino acid (AA) substituted phosphatidylglycerols (PG) and cardiolipins (CL) in mesophilic and thermophilic bacteria. Individual peaks from the lipid class separation by HILIC were isolated and hydrolyzed to determine the absolute configuration of the aminoacyl side chain. The configuration of the aminoacyl side chain was assigned by indirect liquid chromatography (LC) enantiomer separation after the hydrolysis of the aminoacylated (aminoacyl) lipids using N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester as chiral derivatizing agent and reversed phase LC-MS for analysis. When two chromatographic methods were combined, less common AAs, such as d-allo-Ile and d-allo-Thr, were identified. The taxonomic classification of bacteria showed that bacteria of the family Bacillaceae (Bacillus and Geobacillus) produce branched-chain AAs, that is, d-allo-Ile, d-Ile, and d-Leu. These AAs were present only in the genera Bacillus and Geobacillus and not in Alicyclobacillus acidoterrestris (family Alicyclobacillaceae). On the contrary, hydroxy AAs, that is, l- and d-Thr, and l- and d-allo-Thr, were identified as aminoacyl-PG and aminoacyl-CL in A. acidoterrestris and were not present in the genera Bacillus and Geobacillus. Therefore, the complete analysis made it possible to identify the stereochemistry of AAs in aminoacyl PGs and CLs and use this fact for chemotaxonomy.
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Research Institute of Brewing and Malting Prague Czech Republic
Zobrazit více v PubMed
Kocun FJ. Amino acid containing phospholipids as major components of the phospholipids of Streptococcus faecalis 10C1. Biochim Biophys Acta Lipids Lipid Metab. 1970;202(2):277–282.
Khuller GK, Subrahmanyam D. On the ornithinyl ester of phosphatidylglycerol of Mycobacterium 607. J Bacteriol. 1970;101(2):654–656.
Gould RM, Lennarz WJ. Biosynthesis of aminoacyl derivatives of phosphatidylglycerol. Biochem Biophys Res Commun. 1967;26(4):510–515.
Atila M, Katselis G, Chumala P, Luo Y. Characterization of N‐succinylation of l‐lysylphosphatidylglycerol in Bacillus subtilis using tandem mass spectrometry. J Am Soc Mass Spectrom. 2016;27(10):1606–1613.
Leopold K, Fischer W. Heterogeneity of lipoteichoic acid detected by anion exchange chromatography. Arch Microbiol. 1992;157(5):446–450.
Fischer W. The polar lipids of group B Streptococci: i. Glucosylated diphosphatidylglycerol, a novel glycophospholipid. Biochim Biophys Acta Lipids Lipid Metab. 1977;487(1):74–88.
Fischer W, Arneth‐Seifert D. d‐Alanylcardiolipin, a major component of the unique lipid pattern of Vagococcus fluvialis. J Bacteriol. 1998;180(11):2950–2957.
Peter‐Katalinic J, Fischer W. α‐d‐Glucopyranosyl‐, d‐alanyl‐ and l‐lysylcardiolipin from gram‐positive bacteria: analysis by fast atom bombardment mass spectrometry. J Lipid Res. 1998;39(11):2286–2292.
Fischer W, Leopold K. Polar lipids of four listeria species containing l‐lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Evol Microbiol. 1999;49(2):653–662.
Arendt W, Hebecker S, Jäger S, Nimtz M, Moser J. Resistance phenotypes mediated by aminoacyl‐phosphatidylglycerol synthases. J Bacteriol. 2012;194(6):1401–1416.
Houtsmuller UMT, Van Deenen LLM. On the amino acid esters of phosphatidyl glycerol from bacteria. Biochim Biophys Acta Lipids Lipid Metab. 1965;106(3):564–576.
Fields RN, Roy H. Deciphering the tRNA‐dependent lipid aminoacylation systems in bacteria: novel components and structural advances. RNA Biol. 2018;15(4–5):480–491.
Roy H, Ibba M. Broad range amino acid specificity of RNA‐dependent lipid remodeling by multiple peptide resistance factors. J Biol Chem. 2009;284(43):29677–29683.
Smith AM, Harrison JS, Grube CD, Sheppe AEF, Sahara N, Ishii R, et al. tRNA‐dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum. Mol Microbiol. 2015;98(4):681–693.
Bionda N, Stawikowski M, Stawikowska R, Cudic M, López‐Vallejo F, Treitl D, et al. Effects of cyclic lipodepsipeptide structural modulation on stability, antibacterial activity, and human cell toxicity. ChemMedChem. 2012;7(5):871–882.
Shoji J, Kato T. Studies on antibiotics from genus Bacillus.17. Structure of cerexin‐B. J Antibiot. 1976;29(12):1275–1280.
Shoji J, Kato T. Studies on antibiotics from genus Bacillus.7. Amino‐acid sequence of cerexin‐A. J Antibiot. 1975;28(10):764–769.
Shoji J, Hinoo H, Katayama T, Matsumoto K, Tanimoto T, Hattori T, et al. Isolation and characterization of new peptide antibiotics, plusbacins A1‐similar‐to‐A4 and B1‐similar‐to‐B4. J Antibiot. 1992;45(6):817–823.
Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev. 2016;36(1):4–31.
Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol. 2004;97(5):942–949.
Goodlett DR, Abuaf PA, Savage PA, Kowalski KA, Mukherjee TK, Tolan JW, et al. Peptide chiral purity determination: hydrolysis in deuterated acid, derivatization with Marfey's reagent and analysis using high‐performance liquid chromatography‐electrospray ionization‐mass spectrometry. J Chromatogr A. 1995;707(2):233–244.
Morvan M, Mikšík I. Recent advances in chiral analysis of proteins and peptides. Separations. 2021;8(8):112.
Hess S, Gustafson KR, Milanowski DJ, Alvira E, Lipton MA, Pannell LK. Chirality determination of unusual amino acids using precolumn derivatization and liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A. 2004;1035(2):211–219.
Palyzová A, Guschina IA, Řezanka T. Chiral analysis of glycerol phosphates—can bacteria biosynthesize heterochiral phospholipid membranes? J Chromatogr A. 2022;1676:463267.
Řezanka T, Palyzová A, Vítová M, Brányik T, Kulišová M, Jarošová‐Kolouchová I. Structural characterization of mono‐ and dimethylphosphatidylethanolamines from various organisms using a complex analytical strategy including chiral chromatography. Symmetry. 2022;14(3):616.
Vitova M, Stranska M, Palyzova A, Rezanka T. Detailed structural characterization of cardiolipins from various biological sources using a complex analytical strategy comprising fractionation, hydrolysis and chiral chromatography. J Chromatogr A. 2021;1648:462185.
Palyzova A, Cajthaml T, Rezanka T. Separation of regioisomers and enantiomers of triacylglycerols containing branched fatty acids (iso and/or anteiso). Electrophoresis. 2021;42(17–18):1832–1843.
Siristova L, Melzoch K, Rezanka T. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles. 2009;13(1):101–109.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917.
Markham JE, Jaworski JG. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(7):1304–1314.
de Jesus SS, Filho RM. Recent advances in lipid extraction using green solvents. Renew Sust Energ Rev. 2020;133:110289.
Shiva S, Enninful R, Roth MR, Tamura P, Jagadish K, Welti R. An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods. 2018;14(1):14.
Markham JE, Li J, Cahoon EB, Jaworski JG. Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem. 2006;281(32):22684–22694.
Ebert B, Rautengarten C, McFarlane HE, Rupasinghe T, Zeng W, Ford K, et al. A Golgi UDP‐GlcNAc transporter delivers substrates for N‐linked glycans and sphingolipids. Nat Plants. 2018;4(10):792–801.
Hewelt‐Belka W, Nakonieczna J, Belka M, Bączek T, Namieśnik J, Kot‐Wasik A. Comprehensive methodology for Staphylococcus aureus lipidomics by liquid chromatography and quadrupole time‐of‐flight mass spectrometry. J Chromatogr A. 2014;1362:62–74.
Sohlenkamp C, Galindo‐Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas‐Oates J, et al. The lipid lysyl‐phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. MPMI. 2007;20(11):1421–1430.
Atila M, Luo Y. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis. F1000Research. 2016;5:121.
Rezanka T, Kambourova M, Derekova A, Kolouchová I, Sigler K. LC–ESI–MS/MS Identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern. Lipids. 2012;47(7):729–739.
Hsu F‐F, Turk J. Studies on phosphatidylglycerol with triple quadrupole tandem mass spectrometry with electrospray ionization: fragmentation processes and structural characterization. J Am Soc Mass Spectrom. 2001;12(9):1036–1043.
Danielsen M, Nebel C, Dalsgaard TK. Simultaneous determination of l‐ and d‐amino acids in proteins: a sensitive method using hydrolysis in deuterated acid and liquid chromatography–tandem mass spectrometry analysis. Foods. 2020;9(3):309.
Xing Y, Li X, Guo X, Cui Y. Simultaneous determination of 18 d‐amino acids in rat plasma by an ultrahigh‐performance liquid chromatography‐tandem mass spectrometry method: application to explore the potential relationship between Alzheimer's disease and d‐amino acid level alterations. Anal Bioanal Chem. 2016;408(1):141–150.
Barbas‐Bernardos C, Garcia‐Perez I, Lorenzo MP, Alonso‐Herranz V, Nicholson J, Garcia A. Development and validation of a high performance liquid chromatography‐tandem mass spectrometry method for the absolute analysis of 17 α‐d‐amino acids in cooked meals. J Chromatogr A. 2020;1611:460598.
Tian H, Zheng N, Li S, Zhang Y, Zhao S, Wen F, et al. Characterization of chiral amino acids from different milk origins using ultra‐performance liquid chromatography coupled to ion‐mobility mass spectrometry. Sci Rep. 2017;7(1):46289.
Geiger O, González‐Silva N, López‐Lara IM, Sohlenkamp C. Amino acid‐containing membrane lipids in bacteria. Prog Lipid Res. 2010;49(1):46–60.
Roy H. Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life. 2009;61(10):940–953.
Haest CWM, De Gier J, Op Den Kamp JAF, Bartels P, Van Deenen LLM. Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta Biomembr. 1972;255(3):720–733.
Andrä J, Goldmann T, Ernst CM, Peschel A, Gutsmann T. Multiple peptide resistance factor (MprF)‐mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl‐phosphatidylglycerol. J Biol Chem. 2011;286(21):18692–18700.
Cox E, Michalak A, Pagentine S, Seaton P, Pokorny A. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Biochim Biophys Acta Biomembr. 2014;1838(9):2198–2204.