Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32722348
PubMed Central
PMC7466014
DOI
10.3390/genes11080849
PII: genes11080849
Knihovny.cz E-zdroje
- Klíčová slova
- Arthropoda, X1X20, X1X2Y, Y chromosome, achiasmatic pairing, in situ hybridisation, karyotype evolution, male-specific region, neo-sex chromosome, repetitive DNA,
- MeSH
- biologická evoluce * MeSH
- genom * MeSH
- karyotyp MeSH
- meióza * MeSH
- pavouci genetika MeSH
- pohlavní chromozomy genetika MeSH
- sexuální diferenciace * MeSH
- srovnávací genomová hybridizace metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.
Zobrazit více v PubMed
Ironside J.E. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. BioEssays. 2010;32:718–726. doi: 10.1002/bies.200900124. PubMed DOI
Ellegren H. Sex-chromosome evolution: Recent progress and the influence of male and female heterogamety. Nat. Rev. Genet. 2011;12:157–166. doi: 10.1038/nrg2948. PubMed DOI
Grossen C., Neuenschwander S., Perrin N. The evolution of XY recombination: Sexually antagonistic selection versus deleterious mutation load. Evolution. 2012;66:3155–3166. doi: 10.1111/j.1558-5646.2012.01661.x. PubMed DOI
Mank J.E. Sex chromosome dosage compensation: Definitely not for everyone. Trends Genet. 2013;29:677–683. doi: 10.1016/j.tig.2013.07.005. PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., Neven L.G., Sahara K., Marec F. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Vicoso B., Bachtrog D. Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature. 2013;499:332–335. doi: 10.1038/nature12235. PubMed DOI PMC
Kiuchi T., Koga H., Kawamoto M., Shoji K., Sakai H., Arai Y., Ishihara G., Kawaoka S., Sugano S., Shimada T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–636. doi: 10.1038/nature13315. PubMed DOI
Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. doi: 10.1007/s00412-015-0569-y. PubMed DOI
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., Kubíčková S., Voleníková A., Kawahara A.Y., Peters R.S., et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI
Tomaszkiewicz M., Medvedev P., Makova K.D. Y and W chromosome assemblies: Approaches and discoveries. Trends Genet. 2017;33:266–282. doi: 10.1016/j.tig.2017.01.008. PubMed DOI
Cavoto E., Neuenschwander S., Goudet J., Perrin N. Sex-antagonistic genes, XY recombination and feminized Y chromosomes. J. Evol. Biol. 2018;31:416–427. doi: 10.1111/jeb.13235. PubMed DOI
Ohno S. Sex Chromosomes and Sex-Linked Genes. Springer; New York, NY, USA: 1967. pp. 1–192.
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Wright A.E., Dean R., Zimmer F., Mank J.E. How to make a sex chromosome. Nat. Commun. 2016;7:12087. doi: 10.1038/ncomms12087. PubMed DOI PMC
Bergero R., Charlesworth D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009;24:94–102. doi: 10.1016/j.tree.2008.09.010. PubMed DOI
Kaiser V.B., Bachtrog D. Evolution of sex chromosomes in insects. Annu. Rev. Genet. 2010;44:91–112. doi: 10.1146/annurev-genet-102209-163600. PubMed DOI PMC
Blackmon H., Ross L., Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 2017;108:78–93. doi: 10.1093/jhered/esw047. PubMed DOI PMC
Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI
Král J., Kořínková T., Forman M., Krkavcová L. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet. Genome Res. 2011;133:43–66. doi: 10.1159/000323497. PubMed DOI
Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. Sex chromosomes and meiosis in spiders: A review. In: Swan A., editor. Meiosis—Molecular Mechanisms and Cytogenetic Diversity. Volume 5. InTechOpen; Rieka, Croatia: 2012. pp. 87–108.
Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G., et al. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI
Kořínková T., Král J. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W., editor. Spider Ecophysiology. 1st ed. Springer; Berlin, Germany: 2013. pp. 159–169. DOI
World Spider Catalog. [(accessed on 24 May 2020)]; Available online: https://wsc.nmbe.ch/
Coddington J.A., Levi H.W. Systematics and evolution of spiders (Araneae) Annu. Rev. Ecol. Syst. 1991;22:565–592. doi: 10.1146/annurev.es.22.110191.003025. DOI
Coddington J.A. Phylogeny and classification of spiders. In: Ubick D., Paquin P., Cushing P.E., Roth V., editors. Spiders of North America: An Identification Manual. American Arachnological Society; San Francisco, CA, USA: 2005. pp. 18–24.
Suzuki S. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J. Sci. Hiroshima Univ. B. 1954;15:23–136.
White M.J.D. Animal Cytology and Evolution. 3rd ed. Cambridge University Press; London, UK: 1973. pp. 1–468.
Palacios-Gimenez O.M., Cabral-de Mello D.C. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: A case of the unusual X1X20 sex chromosome system in Orthoptera. Mol. Genet. Genomics. 2015;290:623–631. doi: 10.1007/s00438-014-0947-9. PubMed DOI
Postiglioni A., Brum-Zorrilla M. Karyological studies on Uruguayan spiders II. Sex chromosomes in spiders of the genus Lycosa (Araneae-Lycosidae) Genetica. 1981;56:47–53. doi: 10.1007/BF00126929. DOI
Maddison W.P. XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae) Chromosoma. 1982;85:23–37. doi: 10.1007/BF00344592. DOI
Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A., Almerje C.R. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae) Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI
Řezáč M., Král J., Musilová J., Pekár S. Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae) Hereditas. 2006;143:123–129. doi: 10.1111/j.2006.0018-0661.01949.x. PubMed DOI
Sharp H.E., Rowell D.M. Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: Structural heterozygosity in an Australian spider. J. Evol. Biol. 2007;20:2427–2439. doi: 10.1111/j.1420-9101.2007.01395.x. PubMed DOI
Maddison W.P., Leduc-Robert G. Multiple origins of sex chromosome fusions correlated with chiasma localization in Habronattus jumping spiders (Araneae: Salticidae) Evolution. 2013;67:2258–2272. doi: 10.1111/evo.12109. PubMed DOI PMC
Maddison W.P., Maddison D.R., Derkarabetian S., Hedin M. Sitticine jumping spiders: Phylogeny, classification, and chromosomes (Araneae, Salticidae, Sitticini) ZooKeys. 2020;925:1–54. doi: 10.3897/zookeys.925.39691. PubMed DOI PMC
Silva R.W., Klisiowicz D.D.R., Cella D.M., Mangili O.C., Sbalqueiro I.J. Differential distribution of constitutive heterochromatin in two species of brown spider: Loxosceles intermedia and L. laeta (Araneae, Sicariidae), from the metropolitan region of Curitiba, PR (Brasil) Acta Biol. Parana. 2002;31:123–136.
Král J., Forman M., Kořínková T., Reyes Lerma A.C., Haddad C.R., Musilová J., Řezáč M., Ávila Herrera I., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC
Araujo D., Schneider M.C., Zacaro A.A., de Oliveira E.G., Martins R., Brescovit A.D., Knysak I., Cella D.M. Venomous Loxosceles species (Araneae, Haplogynae, Sicariidae) from Brazil: 2n♂ = 23 and X1X2Y sex chromosome system as shared characteristics. Zoolog. Sci. 2020;37:128–139. doi: 10.2108/zs190128. PubMed DOI
Paula-Neto E., Cella D.M., Araújo D., Brescovit A.D., Schneider M.C. Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae) J. Arachnol. 2017;45:123–128. doi: 10.1636/M14-69.1. DOI
Cordellier M., Schneider J.M., Uhl G., Posnien N. Sex differences in spiders: From phenotype to genomics. Dev. Genes Evol. 2020;230:155–172. doi: 10.1007/s00427-020-00657-6. PubMed DOI PMC
Sheffer M.M., Hoppe A., Krehenwinkel H., Uhl G., Kuss A.W., Jensen L., Jensen C., Gillespie R.G., Hoff K.J., Prost S. Chromosome-level reference genome of the European wasp spider Argiope bruennichi: A resource for studies on range expansion and evolutionary adaptation. bioRxiv. 2020 doi: 10.1101/2020.05.21.103564. PubMed DOI PMC
Bechsagaard J., Schou M.F., Vanthournout B., Hendrickx F., Knudsen B., Settepani V., Schierup M.H., Bilde T. Evidence for faster X chromosome evolution in spiders. Mol. Biol. Evol. 2019;36:1281–1293. doi: 10.1093/molbev/msz074. PubMed DOI PMC
Traut W., Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, platyfish and guppy. Chromosome Res. 2001;9:659–672. doi: 10.1023/A:1012956324417. PubMed DOI
Vítková M., Fuková I., Kubíčková S., Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera) Chromosome Res. 2007;15:917–930. doi: 10.1007/s10577-007-1173-7. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., Marec F. Dynamic karyotype evolution and unique sex determinatin systems in Leptidea wood white butterflies. BMC Evol. Biol. 2015;15:1–16. doi: 10.1186/s12862-015-0375-4. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Montiel E.E., Badenhorst D., Tamplin J., Burke R.L., Valenzuela N. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma. 2017;126:105–113. doi: 10.1007/s00412-016-0576-7. PubMed DOI
Yano C.F., Bertollo L.A.C., Ezaz T., Trifonov V., Sember A., Liehr T., Cioffi M.B. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) Heredity. 2017;118:276–283. doi: 10.1038/hdy.2016.83. PubMed DOI PMC
Sember A., Bertollo L.A.C., Yano C.F., Hatanaka T., Ráb P., de Oliveira E.A., Cioffi M.B. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:1–12. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., Marec F. Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes. 2018;9:279. doi: 10.3390/genes9060279. PubMed DOI PMC
Moraes R.L., Sember A., Bertollo L.A.C., de Oliveira E.A., Ráb P., Hatanaka T., Marinho M.M.F., Liehr T., Al-Rikabi A.B.H., Feldberg E., et al. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae) Front. Genet. 2019;10:1–13. doi: 10.3389/fgene.2019.00678. PubMed DOI PMC
Dolejš P., Kořínková T., Musilová J., Opatová V., Kubcová L., Buchar J., Král J. Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae) Eur. J. Entomol. 2011;108:1–16. doi: 10.14411/eje.2011.001. DOI
Winnepenninckx B., Backeljau T., De Wachter R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993;9:407. doi: 10.1016/0168-9525(93)90102-N. PubMed DOI
Kubíčková S., Černohorská H., Musilová P., Rubeš J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Vet. Res. 2002;10:571–577. doi: 10.1023/A:1020914702767. PubMed DOI
Britten R.J., Graham D.E., Neufeld B.R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. PubMed DOI
Peterson D.G., Pearson W.R., Stack S.M. Characterization of the tomato (Lycopsersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome. 1998;41:346–356. doi: 10.1139/g98-025. DOI
Zwick M.S., Hanson R.E., McKnight T.D., Islam-Faridi M.N., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of Cot-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Traut W., Eickhoff U., Schorch J.C. Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH) Methods Cell Sci. 2001;23:157–163. doi: 10.1023/A:1013138925996. PubMed DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., de Almeida L.F., editors. Fish Cytogenetic Techniques. 1st ed. CRC Press; Cleveland, OH, USA: 2015. pp. 118–131. DOI
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Wheeler W.C., Coddington J.A., Crowley L.M., Dimitrov D., Goloboff P.A., Griswold C.E., Hormiga G., Prendini L., Ramírez M.J., Sierwald P., et al. The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33:574–616. doi: 10.1111/cla.12182. PubMed DOI
Lüddecke T., Krehenwinkel H., Canning G., Glaw F., Longhorn S.J., Tänzler R., Wendt I., Vences M. Discovering the silk road: Nuclear and mitochondrial sequence data resolve the phylogenetic relationships among theraphosid spider subfamilies. Mol. Phylogenet. Evol. 2018;119:63–70. doi: 10.1016/j.ympev.2017.10.015. PubMed DOI
Fernandez R., Kallal R.J., Dimitrov D., Ballesteros J.A., Arnedo M.A., Giribet G., Hormiga G. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr. Biol. 2018;28:1489–1497. doi: 10.1016/j.cub.2018.03.064. PubMed DOI
Chirino M.G., Fourastie M.F., Centeno N.D., Bressa M.J. Unusual chromosome polymorphism and heterochromatin variation in the Argentinean population of the necrophagous fly Lucilia sericata (Diptera: Calliphoridae), comparison with other populations and evolutionary aspects. Eur. J. Entomol. 2020;117:295–301. doi: 10.14411/eje.2020.034. DOI
Garrido-Ramos M.A. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Fotsig S.F., Margoliash J., Wang C., Saini S., Yanicky R., Shleizer-Burko S., Goren A., Gymrek M.T. The impact of short tandem repeat variation on gene expression. Nat. Genet. 2019;51:1652–1659. doi: 10.1038/s41588-019-0521-9. PubMed DOI PMC
Ananiev E.V., Chamberlin M.A., Klaiber J., Svitashev S. Microsatellite megatracts in the maize (Zea mays L.) genome. Genome. 2005;48:1061–1069. doi: 10.1139/g05-061. PubMed DOI
Hughes J.F., Skaletsky H., Koutseva N., Pyntikova T., Page D.C. Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals. Genome Biol. 2015;16:104. doi: 10.1186/s13059-015-0667-4. PubMed DOI PMC
Murata C., Kuroki Y., Imoto I., Kuroiwa A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosome Res. 2016;24:407–419. doi: 10.1007/s10577-016-9531-y. PubMed DOI
Tobler R., Nolte V., Schlötterer C. High rate of translocation-based gene birth on the Drosophila Y chromosome. Proc. Natl. Acad. Sci. USA. 2017;114:201706502. doi: 10.1073/pnas.1706502114. PubMed DOI PMC
Willems T., Gymrek M., Poznik G.D., Tyler-Smith C. The 1000 Genomes Project Chromosome Y Group, Erlich, Y. 2016. Population-scale sequencing data enable precise estimates of Y-STR mutation rates. Am. J. Hum. Genet. 2016;98:919–933. doi: 10.1016/j.ajhg.2016.04.001. PubMed DOI PMC
Jablonka E., Lamb M.J. Meiotic pairing constraints and the activity of sex chromosomes. J. Theor. Biol. 1988;133:23–36. doi: 10.1016/S0022-5193(88)80022-5. PubMed DOI
McKee B.D., Handel M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma. 1993;102:71–80. doi: 10.1007/BF00356023. PubMed DOI
Noronha R.C.R., Nagamachi C.Y., O’Brien P.C.M., Ferguson-Smith M.A., Pieczarka J.C. Neo-XY body: An analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet. Genome Res. 2009;124:37–43. doi: 10.1159/000200086. PubMed DOI
Garrison N.L., Rodriguez J., Agnarsson I., Coddington J.A., Griswold C.E., Hamilton C.A., Hedin M., Kocot K.M., Ledford J.M., Bond J.E. Spider phylogenomics: Untangling the Spider Tree of Life. PeerJ. 2016;4:e1719. doi: 10.7717/peerj.1719. PubMed DOI PMC
Silva D. Estudio cariotípico de Loxosceles laeta (Araneae: Loxoscelidae) Rev. Perúana Entomol. 1988;31:9–12.
Sumner A.T. Chromosome Banding. Unwin Hyman; London, UK: 1990.
Matsunaga S. Junk DNA promotes sex chromosome evolution. Heredity. 2009;102:525–526. doi: 10.1038/hdy.2009.36. PubMed DOI
Moreira-Filho O., Bertollo L.A.C., Galetti P.M., Jr. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae) Caryologia. 1993;46:115–125. doi: 10.1080/00087114.1993.10797253. DOI
Shibata F., Hizume M., Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma. 1999;108:266–270. doi: 10.1007/s004120050377. PubMed DOI
Schmid M., Feichtinger W., Steinlein C., Rupprecht T., Haaf T., Kaiser H. Chromosome banding in Amphibia. XXIII. Giant W sex chromosomes and extremely small genomes in Eleutherodactylus euphronides and Eleutherodactylus shrevei (Anura, Leptodactylidae) Cytogenet. Genome Res. 2002;97:81–94. doi: 10.1159/000064055. PubMed DOI
De Oliveira R.R., Feldberg E., Dos Anjos M.B., Zuanon J. Karyotype characterization and ZZ/ZW sex chromosome heteromorphism in two species of the catfish genus Ancistrus Kner, 1854 (Siluriformes: Loricariidae) from the Amazon basin. Neotrop. Ichthyol. 2007;5:301–306. doi: 10.1590/S1679-62252007000300010. DOI
Kejnovský E., Hobza R., Čermák T., Kubát Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI
Sousa A., Fuchs J., Renner S.S. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 2013;139:107–118. doi: 10.1159/000345370. PubMed DOI
Poltronieri J., Marquioni V., Bertollo L.A.C., Kejnovský E., Molina W.F., Liehr T., Cioffi M.B. Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): Unequal accumulation on the W chromosomes. Cytogenet. Genome Res. 2013;142:40–45. doi: 10.1159/000355908. PubMed DOI
Viana P.F., Ezaz T., Marajó L., Ferreira M., Zuanon J., Cioffi M.B., Bertollo L.A.C., Gross M.C., Feldberg E. Genomic organization of repetitive DNAs and differentiation of an XX/XY sex chromosome system in the Amazonian puffer fish, Colomesus asellus (Tetraodontiformes) Cytogenet. Genome Res. 2017;153:96–104. doi: 10.1159/000484423. PubMed DOI
Wolf K.W. How meiotic cells deal with non-exchange chromosomes. BioEssays. 1994;16:107–114. doi: 10.1002/bies.950160207. PubMed DOI
Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Šíchová J., Nguyen P., Dalíková M., Marec F. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC
Uno Y., Nishida C., Yoshimoto S., Ito M., Oshima Y., Yokoyama S., Nakamura M., Matsuda Y. Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Raninae and Xenopodinae. Chromosome Res. 2008;16:999–1011. doi: 10.1007/s10577-008-1257-z. PubMed DOI
Green J.E., Dalíková M., Sahara K., Marec F., Akam M. XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima. PLoS ONE. 2016;11:e0150292. doi: 10.1371/journal.pone.0150292. PubMed DOI PMC
Augstenová B., Johnson Pokorná M., Altmanová M., Frynta D., Rovatsos M., Kratochvíl L. ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated. Evolution. 2018;72:1701–1707. doi: 10.1111/evo.13543. PubMed DOI
Kato A., Vega J.M., Han F., Lamb J.C., Bircher J.A. Advances in plant chromosome identification and cytogenetic techniques. Curr. Opin. Plant. Biol. 2005;8:148–154. doi: 10.1016/j.pbi.2005.01.014. PubMed DOI
Markova M., Vyskot B. New horizons of genomic in situ hybridization. Cytogenet. Genome Res. 2010;126:368–375. doi: 10.1159/000275796. PubMed DOI
Lahn B.T., Page D.C. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI
Toder R., Wienberg J., Voullaire L., O’Brien P.C.M., Maccarone P., Marshall Graves J.A. Shared DNA sequences between the X and Y chromosomes in the tammar wallaby–Evidence for independent additions to eutherian and marsupial sex chromosomes. Chromosoma. 1997;106:94–98. doi: 10.1007/s004120050228. PubMed DOI
Lisachov A.P., Makunin A.I., Giovannotti M., Pereira J.C., Druzhkova A.S., Caputo Barucchi V., Ferguson-Smith M.A., Trifonov V.A. Genetic content of the neo-sex chromosomes in Ctenonotus and Norops (Squamata, Actyloidae) and degeneration of the Y chromosome as revealed by high-throughput sequencing of individual chromosomes. Cytogenet. Genome Res. 2019;157:115–122. doi: 10.1159/000497091. PubMed DOI
Blackmon H., Demuth J.P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays. 2015;37:942–950. doi: 10.1002/bies.201500040. PubMed DOI
Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 2019;28:3042–3052. doi: 10.1111/mec.15126. PubMed DOI
Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., Marec F. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. doi: 10.1007/s00412-006-0086-0. PubMed DOI
Mongue A.J., Nguyen P., Voleníková A., Walters J.R. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus. G3 (Bethesda) 2017;7:g3.300187.2017. doi: 10.1534/g3.117.300187. PubMed DOI PMC
Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI
Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Koubová M., et al. Evolutionary pattern of karyotypes, nucleolus organizer regions, sex chromosomes, and meiosis in pholcid spiders (Araneae: Pholcidae): Implications for reconstructing karyotype evolution of araneomorph spiders. BMC Evol. Biol. submitted.
Araujo D., Schneider M.C., Paula-Neto E., Cella D.M. The Spider Cytogenetic Database. [(accessed on 17 June 2020)]; Available online: www.arthropodacytogenetics.bio.br/spiderdatabase.
Cuñado N., Navajas-Pérez R., de la Herrán R., Rejón C.R., Rejón M.R., Santos J.L., Garrido-Ramos M.A. The evolution of sex chromosomes in the genus Rumex (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes. Chromosome Res. 2007;15:825–832. doi: 10.1007/s10577-007-1166-6. PubMed DOI
Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genom. 2009;281:249–259. doi: 10.1007/s00438-008-0405-7. PubMed DOI
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC
Jetybayev I.Y., Bugrov A.G., Ünal M., Buleu O.G., Rubtsov N.B. Molecular cytogenetic analysis reveals the existence of two independent neo-XY sex chromosome systems in Anatolian Pamphagidae grasshoppers. BMC Evol. Biol. 2017;17:20. doi: 10.1186/s12862-016-0868-9. PubMed DOI PMC
Palacios-Gimenez O.M., Dias G.B., de Lima L.G., Kuhn G.C.E.S., Ramos É., Martins C., Cabral-de-Mello D.C. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017;7:6422. doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC
Gazoni T., Haddad C.F.B., Narimatsu H., Cabral-de-Mello D.C., Lyra M.L., Parise-Maltempi P.P. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma. 2018;127:269–278. doi: 10.1007/s00412-018-0663-z. PubMed DOI
Xu D., Sember A., Zhu Q., Oliveira E.A., Liehr T., Al-Rikabi A.B.H., Xiao Z., Song H., Cioffi M.B. Deciphering the origin and evolution of the X1X2Y system in two closely-related Oplegnathus species (Oplegnathidae and Centrarchiformes) Int. J. Mol. Sci. 2019;20:3571. doi: 10.3390/ijms20143571. PubMed DOI PMC