Sex Chromosomes of the Iconic Moth Abraxas grossulariata (Lepidoptera, Geometridae) and Its Congener A. sylvata
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29857494
PubMed Central
PMC6027526
DOI
10.3390/genes9060279
PII: genes9060279
Knihovny.cz E-zdroje
- Klíčová slova
- Abraxas, chromosome painting, comparative genomic hybridization, female heterogamety, heterochromatin, molecular divergence dating, ribosomal DNA (rDNA),
- Publikační typ
- časopisecké články MeSH
The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. grossulariata and its congener, A. sylvata. Although these species split only around 9.5 million years ago, and both species have the expected WZ/ZZ chromosomal system of sex determination and their sex chromosomes share the major ribosomal DNA (rDNA) representing the nucleolar organizer region (NOR), we found major differences between their karyotypes, including between their sex chromosomes. The species differ in chromosome number, which is 2n = 56 in A. grossularita and 2n = 58 in A. sylvata. In addition, A. grossularita autosomes exhibit massive autosomal blocks of heterochromatin, which is a very rare phenomenon in Lepidoptera, whereas the autosomes of A. sylvata are completely devoid of distinct heterochromatin. Their W chromosomes differ greatly. Although they are largely composed of female-specific DNA sequences, as shown by comparative genomic hybridization, cross-species W-chromosome painting revealed considerable sequence differences between them. The results suggest a relatively rapid molecular divergence of Abraxas W chromosomes by the independent spreading of female-specific repetitive sequences.
Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
Veterinary Research Institute Hudcova 70 62100 Brno Czech Republic
Zobrazit více v PubMed
Stevens N.M. Carnegie Institution of Washington, Publication No. 36. Henry E. Wilkens Printing Co.; Washington, DC, USA: 1905. Studies in spermatogenesis with especial reference to the “accessory chromosome”.33p
Morgan T.H., Sturtevant A.H., Muller H.J., Bridges C.B. The Mechanism of Mendelian Heredity. Henry Holt and Company; New York, NY, USA: 1915. 262p
Doncaster L., Raynor G.H. On breeding experiments with Lepidoptera. Proc. Zool. Soc. Lond. 1906;1:125–133. doi: 10.1111/j.1469-7998.1906.tb08425.x. DOI
Doncaster L. The chromosomes in the oogenesis and spermatogenesis of Pieris brassicae, and in the oogenesis of Abraxas grossulariata. J. Genet. 1912;2:189–200. doi: 10.1007/BF02981539. DOI
Seiler J. Geschlechtschromosomen bei Lepidopteren. Zool. Anz. 1913;41:246–251.
Traut W., Sahara K., Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex. Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI
Marec F., Sahara K., Traut W. Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith M.R., Marec F., editors. Molecular Biology and Genetics of the Lepidoptera. CRC Press; Boca Raton, FL, USA: 2010. pp. 49–63.
Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:83–94. doi: 10.1007/s10577-011-9262-z. PubMed DOI
Dopman E.B., Perez L., Bogdanowicz S.M., Harrison R.G. Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proc. Natl. Acad. Sci. USA. 2005;102:14706–14711. doi: 10.1073/pnas.0502054102. PubMed DOI PMC
Putnam A.S., Scriber J.M., Andolfatto P. Discordant divergence times among Z-chromosome regions between two ecologically distinct swallowtail butterfly species. Evolution. 2007;61:912–927. doi: 10.1111/j.1558-5646.2007.00076.x. PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., Neven L.G., Sahara K., Marec F. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Kiuchi T., Koga H., Kawamoto M., Shoji K., Sakai H., Arai Y., Ishihara G., Kawaoka S., Sugano S., Shimada T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509:633–636. doi: 10.1038/nature13315. PubMed DOI
Kost S., Heckel D.G., Yoshido A., Marec F., Groot A.T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution. 2016;70:1418–1427. doi: 10.1111/evo.12940. PubMed DOI
Graves J.A.M. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 2016;17:33–46. doi: 10.1038/nrg.2015.2. PubMed DOI
Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. doi: 10.1007/s00412-015-0569-y. PubMed DOI
Marec F., Novák K. Absence of sex chromatin corresponds with a sex-chromosome univalent in females of Trichoptera. Eur. J. Entomol. 1998;95:197–209.
Bush G.L. Female heterogamety in the family Tephritidae (Acalyptratae, Diptera) Am. Nat. 1966;100:119–126. doi: 10.1086/282405. DOI
Kaiser V.B., Bachtrog D. Evolution of sex chromosomes in insects. Annu. Rev. Genet. 2010;44:91–112. doi: 10.1146/annurev-genet-102209-163600. PubMed DOI PMC
Rigaud T., Juchault P., Mocquard J.P. The evolution of sex determination in isopod crustaceans. BioEssays. 1997;19:409–416. doi: 10.1002/bies.950190508. DOI
Špakulová M., Casanova J.C. Current knowledge on B chromosomes in natural populations of helminth parasites: A review. Cytogenet. Genome Res. 2004;106:222–229. doi: 10.1159/000079291. PubMed DOI
Kongim B., Sutcharit C., Tongkerd P., Tan S.H.A., Quynh N.X., Naggs F., Panha S. Karyotype variations in the genus Pollicaria (Caenogastropoda: Pupinidae) Zool. Stud. 2010;49:125–131.
Parnes S., Khalaila I., Hulata G., Sagi A. Sex determination in crayfish: Are intersex Cherax quadricarinatus (Decapoda, Parastacidae) genetically females? Genet. Res. 2003;82:107–116. doi: 10.1017/S0016672303006372. PubMed DOI
Jiang X.H., Qiu G.F. Female-only sex-linked amplified fragment length polymorphism markers support ZW/ZZ sex determination in the giant freshwater prawn Macrobrachium rosenbergii. Anim. Genet. 2013;44:782–785. doi: 10.1111/age.12067. PubMed DOI
Kumar S., Kumari R., Sharma V. Genetics of dioecy and causal sex chromosomes in plants. J. Genet. 2014;93:241–277. doi: 10.1007/s12041-014-0326-7. PubMed DOI
Van Nieukerken E.J., Kaila L., Kitching I.J., Kristensen N.P., Lees D.C., Minet J., Mitter C., Mutanen M., Regier J.C., Simonsen T.J., et al. Order Lepidoptera Linnaeus, 1758. In: Zhang Z.Q., editor. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. Magnolia Press; Auckland, New Zealand: 2011.
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., Marec F. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 2015;15:89. doi: 10.1186/s12862-015-0375-4. PubMed DOI PMC
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI
Šíchová J., Nguyen P., Dalíková M., Marec F. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC
Nguyen P., Carabajal Paladino L. On the neo-sex chromosomes of Lepidoptera. In: Pontarotti P., editor. Evolutionary Biology. Springer International Publishing; Cham, Switzerland: 2016. pp. 171–185.
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Vítková M., Fuková I., Kubíčková S., Marec F. Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera) Chromosome Res. 2007;15:917–930. doi: 10.1007/s10577-007-1173-7. PubMed DOI
Van’t Hof A.E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I.J. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., Kubíčková S., Voleníková A., Kawahara A.Y., Peters R.S., et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI
Fraïsse C., Picard M.A.L., Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 2017;8:1486. doi: 10.1038/s41467-017-01663-5. PubMed DOI PMC
Asser-Kaiser S., Fritsch E., Undorf-Spahn K., Kienzle J., Eberle K.E., Gund N.A., Reineke A., Zebitz C.P.W., Heckel D.G., Huber J., et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007;317:1916–1918. doi: 10.1126/science.1146542. PubMed DOI
Mank J.E., Nam K., Ellegren H. Faster-Z evolution is predominantly due to genetic drift. Mol. Biol. Evol. 2010;27:661–670. doi: 10.1093/molbev/msp282. PubMed DOI
Sackton T.B., Corbett-Detig R.B., Nagaraju J., Vaishna L., Arunkumar K.P., Hartl D.L. Positive selection drives faster-Z evolution in silkmoths. Evolution. 2014;68:2331–2342. doi: 10.1111/evo.12449. PubMed DOI PMC
Abe H., Mita K., Yasukochi Y., Oshiki T., Shimada T. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet. Genome Res. 2005;110:144–151. doi: 10.1159/000084946. PubMed DOI
Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S., Marec F. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116:135–145. doi: 10.1007/s00412-006-0086-0. PubMed DOI
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D.G. High-throughput sequencing of a single chromosome: A moth W chromosome. Chromosome Res. 2013;110:491–505. doi: 10.1007/s10577-013-9376-6. PubMed DOI
Yoshido A., Šíchová J., Kubíčková S., Marec F., Sahara K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res. 2013;21:149–164. doi: 10.1007/s10577-013-9344-1. PubMed DOI
Yoshido A., Marec F., Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: No role in sex determination and reproduction. Heredity. 2016;116:424–433. doi: 10.1038/hdy.2015.110. PubMed DOI PMC
Mediouni J., Fuková I., Frydrychová R., Dhouibi M.H., Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI
Lockwood A.P.M. “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp. Biochem. Physiol. 1961;2:241–289. doi: 10.1016/0010-406X(61)90113-X. PubMed DOI
Kubickova S., Cernohorska H., Musilova P., Rubes J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res. 2002;10:571–577. doi: 10.1023/A:1020914702767. PubMed DOI
Drosopoulou E., Nakou I., Šíchová J., Kubíčková S., Marec F., Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae) Genetica. 2012;140:169–180. doi: 10.1007/s10709-012-9668-3. PubMed DOI
Sahara K., Marec F., Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Kato A., Albert P.S., Vega J.M., Bichler J.A. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 2006;81:71–78. doi: 10.1080/10520290600643677. PubMed DOI
Fuková I., Nguyen P., Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;1092:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Shibata F., Sahara K., Naito Y., Yasukochi Y. Reprobing multicolor FISH preparations in lepidopteran chromosome. Zool. Sci. 2009;26:187–190. doi: 10.2108/zsj.26.187. PubMed DOI
Carabajal Paladino L.Z., Nguyen P., Šíchová J., Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genet. 2014;15(Suppl. 2):S15. doi: 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC
Regier J.C., Mitter C., Zwick A., Bazinet A.L., Cummings M.P., Kawahara A.Y., Sohn J.-C., Zwickl D.J., Cho S., Davis D.R., et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies) PLoS ONE. 2013;8:e58568. doi: 10.1371/journal.pone.0058568. PubMed DOI PMC
Wahlberg N., Wheat C.W., Peña C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths) PLoS ONE. 2013;8:e80875. doi: 10.1371/journal.pone.0080875. PubMed DOI PMC
GenBank. [(accessed on 12 March 2018)]; Available online: https://www.ncbi.nlm.nih.gov/
Õunap E., Viidalepp J., Truuverk A. Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): Integrating molecular data and traditional classifications. Syst. Entomol. 2016;41:824–843. doi: 10.1111/syen.12195. DOI
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Eickbush T.H., Eickbush D.G. Finely orchestrated movements: Evolution of the ribosomal RNA genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Skou P., Sihvonen P., Ennominae I. In: The Geometrid Moths of Europe. Hausmann A., editor. Volume 5. E. J. Brill; Leiden, The Netherlands: 2015. p. 657.
Õunap E., Javoiš J., Viidalepp J., Tammaru T. Phylogenetic relationships of selected European Ennominae (Lepidoptera: Geometridae) Eur. J. Entomol. 2011;108:267–273. doi: 10.14411/eje.2011.036. DOI
Sihvonen P., Mutanen M., Kaila L., Brehm G., Hausmann A., Staude H.S. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae) PLoS ONE. 2011;6:e20356. doi: 10.1371/journal.pone.0020356. PubMed DOI PMC
Traut W., Mosbacher C. Geschlechtschromatin bei Lepidopteren. Chromosoma. 1968;25:343–356. doi: 10.1007/BF01183125. PubMed DOI
Sahara K., Marec F., Eickhoff U., Traut W. Moth sex chromatin probed by comparative genomic hybridization (CGH) Genome. 2003;46:339–342. doi: 10.1139/g03-003. PubMed DOI
Hallast P., Jobling M.A. The Y chromosomes of the great apes. Hum. Genet. 2017;136:511–528. doi: 10.1007/s00439-017-1769-8. PubMed DOI
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113–124. doi: 10.1038/nrg3366. PubMed DOI PMC
Yazdi H.P., Ellegren H. Old but not (so) degenerated—Slow evolution of largely homomorphic sex chromosomes in ratites. Mol. Biol. Evol. 2014;31:1444–1453. doi: 10.1093/molbev/msu101. PubMed DOI
Ellegren H. Sex-chromosome evolution: Recent progress and the influence of male and female heterogamety. Nat. Rev. Genet. 2011;12:157–166. doi: 10.1038/nrg2948. PubMed DOI
Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7:289–295. doi: 10.1023/A:1009278914829. PubMed DOI
Nishida-Umehara C., Tsuda Y., Ishijima J., Ando J., Fujiwara A., Matsuda Y., Griffin D.K. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res. 2007;15:721–734. doi: 10.1007/s10577-007-1157-7. PubMed DOI
Mank J.E., Ellegren H. Parallel divergence and degradation of the avian W sex chromosome. Trends Ecol. Evol. 2007;22:389–391. doi: 10.1016/j.tree.2007.05.003. PubMed DOI
Yano C.F., Poltronieri J., Bertollo L.A., Artoni R.F., Liehr T., Cioffi M.B. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the differentiation of the Z and W chromosomes. PLoS ONE. 2014;9:e90946. doi: 10.1371/journal.pone.0090946. PubMed DOI PMC
Yano C.F., Bertollo L.A.C., Liehr T., Troy W.P., Cioffi M.B. W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. J. Hered. 2016;107:342–348. doi: 10.1093/jhered/esw021. PubMed DOI PMC
Mariguela T.C., Roxo F.F., Foresti F., Oliveira C. Phylogeny and biogeography of Triportheidae (Teleostei: Characiformes) based on molecular data. Mol. Phylogenet. Evol. 2016;96:130–139. doi: 10.1016/j.ympev.2015.11.018. PubMed DOI
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Nguyen P., Sahara K., Yoshido A., Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera) Genetica. 2010;138:343–354. doi: 10.1007/s10709-009-9424-5. PubMed DOI
Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
López-Flores I., Garrido-Ramos M.A. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 2012;7:1–28. PubMed
Talla V., Suh A., Kalsoom F., Dincă V., Vila R., Friberg M., Wiklund C., Backström N. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol. Evol. 2017;9:2491–2505. doi: 10.1093/gbe/evx163. PubMed DOI PMC
Van’t Hof A.E., Marec F., Saccheri I.J., Brakefield P.M., Zwaan B.J. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS ONE. 2008;3:e3882. doi: 10.1371/journal.pone.0003882. PubMed DOI PMC
Yoshido A., Marec F., Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114:193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI
Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths