Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae)

. 2019 ; 10 () : 678. [epub] 20190802

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31428127

Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.

Zobrazit více v PubMed

Almeida-Toledo L. F., Foresti F. (2001). Morphologically differentiated sex chromosomes in Neotropical freshwater fish. Genetica 111, 91–100. 10.1023/A:1013768104422 PubMed DOI

Arai R. (2011). Fish karyotypes: a check list. 1st Edn. Tokyo: Springer. 10.1007/978-4-431-53877-6 DOI

Arcila D., Petry P., Ortí G. (2018). Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, e180016. 10.1590/1982-0224-20180016 DOI

Arcila D., Orti G., Vari R., Armbruster J. W., Stiassny M. L. J., Ko K. D., et al. (2017). Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1, 20. 10.1038/s41559-016-0020 PubMed DOI

Bachtrog D. (2013). Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124. 10.1038/nrg3366 PubMed DOI PMC

Barros L. C., Piscor D., Parise-Maltempi D., Feldberg E. (2018). Differentiation and evolution of the W chromosome in the fish species of Megaleporinus (Characiformes, Anostomidae). Sex. Dev. 12, 204–209. 10.1159/000489693 PubMed DOI

Basset P., Yannic G., Yang F., O’Brien P. C. M., Graphodatsky A. S., Ferguson-Smith M. A. (2006). Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Res. 14, 253–262. 10.1007/s10577-006-1041-x PubMed DOI

Bertollo L. A. C., Moreira-Filho O., Cioffi M. B. (2015). “Direct chromosome preparations from freshwater Teleost fishes,” in Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans. Eds. Ozouf-Costaz C., Pisano E., Foresti E., Almeida-Toledo L. F. (Boca Raton: CRC Press; ), 21–26. 10.1201/b18534-4 DOI

Bertollo L. A. C., Oliveira C., Molina W. F., Margarido V. P., Fontes M. S., Pastori M. C., et al. (2004). Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes). Heredity 93, 228–233. 10.1038/sj.hdy.6800511 PubMed DOI

Bitencourt J. A., Sampaio I., Ramos R. T. C., Vicari M. R., Affonso P. R. A. M. (2016). First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish 14, 90–95. 10.1089/zeb.2016.1333 PubMed DOI

Blanco D. R., Vicari M. R., Lui R. L., Artoni R. F., Almeida M. C., Traldi J. B., et al. (2014). Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica 142, 119–126. 10.1007/s10709-014-9759-4 PubMed DOI

Bracewell R. R., Bentz J. B., Sullivan B. S., Good J. M. (2017). Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nat. Commun. 8, 1953. 10.1038/s41467-017-01761-4 PubMed DOI PMC

Buckup P. A. (1998). “Relationships of the Characidiinae and phylogeny of characiform fishes (Teleostei: Characiformes),” in Phylogeny and classification of neotropical fishes. Eds. Malabarba L. R., Reis R. E., Vari R. P., Lucena Z. M. S., Lucena C. A. S. (Porto Alegre: EDIPUCRS; ), 123–144.

Cardoso A. L., Pieczarka J. C., Nagamachi C. Y. (2015). X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus. Genet. Mol. Biol. 38, 213–219. 10.1590/S1415-4757382220140189 PubMed DOI PMC

Cavalli G., Misteli T. (2013). Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299. 10.1038/nsmb.2474 PubMed DOI PMC

Charlesworth B., Wall J. D. (1999). Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. B 266, 51–56. 10.1098/rspb.1999.0603 DOI

Charlesworth D., Charlesworth B., Marais G. (2005). Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128. 10.1038/sj.hdy.6800697 PubMed DOI

Cioffi M. B., Camacho J. P. M., Bertollo L. A. C. (2011. a). Repetitive DNAs and differentiation of sex chromosomes in Neotropical fishes. Cytogenet. Genome Res. 132, 188–194. 10.1159/000321571 PubMed DOI

Cioffi M. B., Liehr T., Trifonov V., Molina W. F., Bertollo L. A. C. (2013). Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet. Genome Res. 141, 186–194. 10.1159/000354039 PubMed DOI

Cioffi M. B., Martins C., Centofante L., Jacobina U., Bertollo L. A. C. (2009). Chromosomal variability among allopatric populations of erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 125, 132–141. 10.1159/000227838 PubMed DOI

Cioffi M. B., Molina W. F., Artoni R. F., Bertollo L. A. C. (2012. a). “Chromosomes as tools for discovering biodiversity – the case of Erythrinidae fish family,” in Recent trends in cytogenetic studies – Methodologies and applications. Ed. Tirunilai P. (Rijeka: InTech Publisher; ), 125–146.

Cioffi M. B., Moreira-Filho O., Almeida-Toledo L. F., Bertollo L. A. C. (2012. b). The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 80, 2125–2139. 10.1111/j.1095-8649.2012.03272.x PubMed DOI

Cioffi M. B., Moreira-Filho O., Ráb P., Sember A., Molina W. F., Bertollo L. A. C. (2018). Conventional cytogenetic approaches-useful and indispensable tools in discovering fish biodiversity. Curr. Genet. Med. Rep. 6, 176–186. 10.1007/s40142-018-0148-7 DOI

Cioffi M. B., Sánchez A., Marchal J. A., Kosyakova N., Liehr T., Trifonov V., et al. (2011. b). Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species. Genetica 139, 1065. 10.1007/s10709-011-9610-0 PubMed DOI

Cioffi M. D. B., Yano C. F., Sember A., Bertollo L. A. C. (2017). Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. Genes 8, 258. 10.3390/genes8100258 PubMed DOI PMC

Devlin R. H., Nagahama Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364. 10.1016/S0044-8486(02)00057-1 DOI

Faria R., Navarro A. (2010). Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660–669. 10.1016/j.tree.2010.07.008 PubMed DOI

Fernandes C. A., Bally D., Silva V. F. B., Martins-Santos I. C. (2010). System of multiple sex chromosomes in Eigenmannia trilineata López & Castello, 1966 (Sternopygidae, Gymnotiformes) from Iguatemi River Basin, MS, Brazil. Cytologia 75, 463–466. 10.1508/cytologia.75.463 DOI

Fernandes C. A., Paiz L. M., Baumgärtner L., Margarido V. P., Vieira M. M. R. (2017). Comparative cytogenetics of the black ghost knifefish (Gymnotiformes: Apteronotidae): evidence of chromosomal fusion and pericentric inversions in karyotypes of two Apteronotus species. Zebrafish 14, 471–476. 10.1089/zeb.2017.1432 PubMed DOI

Fraser J., Williamson I., Bickmore W. A., Dostie J. (2015). An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347–372. 10.1128/MMBR.00006-15 PubMed DOI PMC

Freitas N. L., Al-Rikabi A. B. H., Bertollo L. A. C., Ezaz T., Yano C. F., Oliveira E. A., et al. (2018). Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Curr. Genomics 18, 01–08. 10.2174/1389202918666170711160528 PubMed DOI PMC

Froese R., Pauly D. (2018). FishBase: World Wide Web electronic publication. Available at: http://www.fishbase.org (Accessed October 25, 2018).

Gamble T. (2016). Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 25, 2114–2116. 10.1111/mec.13648 PubMed DOI

Gornung E. (2013). Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res. 141, 90–102. 10.1159/000354832 PubMed DOI

Guerrero R. F., Kirkpatrick M. (2014). Local adaptation and the evolution of chromosome fusions. Evolution 68, 2747–2756. 10.1111/evo.12481 PubMed DOI

Guiguen Y., Fostier A., Herpin A. (2019). “Sex determination and differentiation in fish: genetic, genomic, and endocrine aspects,” in Sex control in aquaculture. Eds. Wang H. P., Piferrer F., Chen S. L., Shen Z. G. (New Jersey: John Wiley & Sons Ltd; ), 35–63. 10.1002/9781119127291.ch2 DOI

Henning F., Moysés C. B., Calcagnotto D., Meyer A., de Almeida-Toledo L. F. (2011). Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity 106, 391. 10.1038/hdy.2010.82 PubMed DOI PMC

Henning F., Trifonov V., Ferguson-Smith M. A., de Almeida-Toledo L. F. (2008). Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei: Gymnotiformes). Cytogenet. Genome Res. 121, 55–58. 10.1159/000124382 PubMed DOI

Herpin A., Schartl M. (2015). Plasticity of gene-regulatory networks controlling sex-determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260–1274. 10.15252/embr.201540667 PubMed DOI PMC

Kawakami T., Butlin R. K., Cooper S. J. B. (2011). Chromosomal speciation revisited: modes of diversification in Australian morabine grasshoppers (Vandiemenella, viatica species group). Insects 2, 49–61. 10.3390/insects2010049 PubMed DOI PMC

Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., et al. (2013). Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8, e45519. 10.1371/journal.pone.0045519 PubMed DOI PMC

Kitano J., Peichel C. L. (2012). Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fishes 94, 549–558. 10.1007/s10641-011-9853-8 PubMed DOI PMC

Kitano J., Ross J. A., Mori S., Kume M., Jones F. C., Chan Y. F., et al. (2009). A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083. 10.1038/nature08441 PubMed DOI PMC

Kubát Z., Hobza R., Vyskot B., Kejnovský E. (2008). Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome 51, 350–356. 10.1139/G08-024 PubMed DOI

Levan A., Fredga K., Sandberg A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI

Liehr T. (2016). Benign and pathological gain or loss of genetic material - about microscopic and submicroscopic copy number variations (CNVs) in human genetics. Tsitologiia 58, 476–477. PubMed

Liu S., Hui T. H., Tan S. L., Hong Y. (2012). Chromosome evolution and genome miniaturization in minifish. PLoS One 7, e37305. 10.1371/journal.pone.0037305 PubMed DOI PMC

Machado T. C., Pansonato-Alves J. C., Pucci M. B., Nogaroto V., Almeida M. C., Oliveira C., et al. (2011). Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae). BMC Genet. 12, 65. 10.1186/1471-2156-12-65 PubMed DOI PMC

Margarido V. P., Bellafronte E., Moreira-Filho O. (2007). Cytogenetic analysis of three sympatric Gymnotus (Gymnotiformes, Gymnotidae) species verifies invasive species in the Upper Paraná River basin, Brazil. J. Fish Biol. 70, 155–164. 10.1111/j.1095-8649.2007.01365.x DOI

Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. (2009). Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Molecular . Genet. Genom. 281, 249–259. 10.1007/s00438-008-0405-7 PubMed DOI

Montiel E. E., Badenhorst D., Tamplin J., Burke R. L., Valenzuela N. (2017). Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126, 105–113. 10.1007/s00412-016-0576-7 PubMed DOI

Moraes R. L. R., Bertollo L. A. C., Marinho M. M. F., Yano C. F., Hatanaka T., Barby F. F., et al. (2017). Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish 14, 536–546. 10.1089/zeb.2017.1465 PubMed DOI

Mrasek K., Heller A., Rubtsov N., Trifonov V., Starke H., Rocchi M., et al. (2001). Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet. Cell Genet. 93, 242–248. 10.1159/000056991 PubMed DOI

Nagamachi C. Y., Pieczarka J. C., Milhomem S. S. R., O’Brien P. C. M., de Souza A. C. P., Ferguson-Smith M. A. (2010). Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting. BMC Genet. 11, 28. 10.1186/1471-2156-11-28 PubMed DOI PMC

Netto-Ferreira A. L., Marinho M. M. F. (2013). New species of Pyrrhulina (Ostariophysi: Characiformes: Lebiasinidae) from the Brazilian Shield, with comments on a putative monophyletic group of species in the genus. Zootaxa 3664, 369–376. 10.11646/zootaxa.3664.3.7 PubMed DOI

Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková, et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. U.S.A. 110, 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC

Oliveira C., Andreata A. A., Almeida-Toledo L. F., Toledo Filho S. A. (1991). Karyotype and nucleolus organizer regions of Pyrrhulina cf. australis (Pisces, Characiformes, Lebiasinidae). Rev. Bras. Genet. 14, 685–690.

Oliveira E. A., Sember A., Bertollo L. A. C., Yano C. F., Ezaz T., Moreira-Filho O., et al. , (2018). Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma 127, 115–128. 10.1007/s00412-017-0648-3 PubMed DOI

Oliveira R. R., Feldberg E., dos Anjos M. B., Zuanon J. (2008). Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus(Siluriformes: Loricariidae) from the Amazon basin. Genetica 134, 243–249. 10.1007/s10709-007-9231-9 PubMed DOI

Pansonato-Alves J. C., Serrano É. A., Utsunomia R., Camacho J. P. M., da Costa Silva G. J., Vicari M. R., et al. (2014). Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS One 9, e107169. 10.1371/journal.pone.0107169 PubMed DOI PMC

Parise-Maltempi P. P., da Silva E. L., Rens W., Dearden F., O’Brien P. C., Trifonov V., et al. (2013). Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet. 14, 60. 10.1186/1471-2156-14-60 PubMed DOI PMC

Pendás A. M., Móran P., Freije J. P., Garcia-Vásquez E. (1994). Chromosomal mapping and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 67, 31–36. 10.1159/000133792 PubMed DOI

Pennell M. W., Kirkpatrick M., Otto S. P., Vamosi J. C., Peichel C. L., Valenzuela N., et al. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11, e1005237. 10.1371/journal.pgen.1005237 PubMed DOI PMC

Phillips R. B., Konkol N. R., Reed K. M., Stein J. D. (2001). Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo, and Salvelinus (Salmonidae). Genetica 111, 119–123. 10.1023/A:1013743431738 PubMed DOI

Pokorná M., Kratochvíl L., Kejnovský E. (2011). Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet. 12, 90. 10.1186/1471-2156-12-90 PubMed DOI PMC

Poltronieri J., Marquioni V., Bertollo L. A. C., Kejnovský E., Molina W. F., Liehr T., et al. (2014). Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet. Genome Res. 142, 40–45. 10.1159/000355908 PubMed DOI

Reed K. M., Bohlander S. K., Phillips R. B. (1995). Microdissection of the Y chromosome and fluorescence in situ hybridization analysis of the sex chromosomes of lake trout, Salvelinus namaycush. Chromosome Res. 3, 221–226. 10.1007/BF00713046 PubMed DOI

Sambrook J., Russell D. W. (2001). Molecular cloning: a laboratory manual. 3rd Edn. New York, NY: Cold Spring Harbor Laboratory Press.

Sangpakdee W., Tanomtong A., Fan X., Pinthong K., Weise A., Liehr T. (2016). Application of multicolor banding combined with heterochromatic and locus-specific probes identify evolutionary conserved breakpoints in Hylobates pileatus. Mol. Cytogenet. 9, 17. 10.1186/s13039-016-0228-x PubMed DOI PMC

Scacchetti P. C., Utsunomia R., Pansonato-Alves J. C., da Costa Silva G. J., Vicari M. R., Artoni R. F., et al. (2015). Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes). PLoS One 10, e0137231. 10.1371/journal.pone.0137231 PubMed DOI PMC

Schartl M., Schmid M., Nanda I. (2016). Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125, 553–571. 10.1007/s00412-015-0569-y PubMed DOI

Scheel J. J. (1973). Fish chromosomes and their evolution. Charlottenlund, Denmark: International Report Danmarks Akvarium, 22 pp.

Sember A., Bertollo L. A., Ráb P., Yano C. F., Hatanaka T., de Oliveira E. A., et al. (2018. b). Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front. Genet. 9, 71. 10.3389/fgene.2018.00071 PubMed DOI PMC

Sember A., Bohlen J., Šlechtová V., Altmanová M., Pelikánová Š., Ráb P. (2018. a). Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One 13, 1–27. 10.1371/journal.pone.0195054 PubMed DOI PMC

Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. (2015). Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 15, 251. 10.1186/s12862-015-0532-9 PubMed DOI PMC

Smith D. A., Gordon I. J., Traut W., Herren J., Collins S., Martins D. J., et al. (2016). A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc. R. Soc. B 283, 20160821. 10.1098/rspb.2016.0821 PubMed DOI PMC

Soares R. X., Bertollo L. A. C., Cioffi M. B., Costa G. W. W. F., Molina W. F. (2014). Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective. Genet. Mol. Res. 13, 2470–2479. 10.4238/2014.April.3.19 PubMed DOI

Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. (2018). Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127, 141–150. 10.1007/s00412-017-0651-8 PubMed DOI PMC

Sumner A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306. 10.1016/0014-4827(72)90558-7 PubMed DOI

Symonová R., Howell W. (2018). Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes 9, 96. 10.3390/genes9020096 PubMed DOI PMC

Symonová R., Majtánová Z., Sember A., Staaks G. B., Bohlen J., Freyhof J., et al. (2013). Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 13, 42. 10.1186/1471-2148-13-42 PubMed DOI PMC

Symonová R., Sember A., Majtánová Z., Ráb P. (2015). “Characterization of fish genomes by GISH and CGH,” in Fish techniques, ray-fin fishes and chondrichthyans. Eds. Ozouf-Costaz C., Pisano E., Foresti F., de Almeida Toledo L. F. (Boca Ranton, FL: CRC Press; ), 118–131. 10.1201/b18534-17 DOI

Traut W., Sahara K., Otto T. D., Marec F. (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108, 173–180. 10.1007/s004120050366 PubMed DOI

van Doorn G. S., Kirkpatrick M. (2010). Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics 186, 629–645. 10.1534/genetics.110.118596 PubMed DOI PMC

Weise A., Kosyakova N., Voigt M., Aust N., Mrasek K., Löhmer S., et al. (2015). Comprehensive analyses of white-handed gibbon chromosomes enables access to evolutionary conserved breakpoints compared to the human genome. Cytogenet. Genome Res. 145, 42–49. 10.1159/000381764 PubMed DOI

Weitzman M., Weitzman S. H. (2003). “Lebiasinidae (Pencil fishes),” in Checklist of the freshwater fishes of South and Central America. Eds. Reis R. E., Kullander S. O., Ferraris C. J., Jr. (Porto Alegre: EDIPUCRS; ), 241–251.

Weitzman S. H., Vari R. P. (1988). Miniaturization in South American freshwater fishes: an overview and discussion. Proc. Biol. Soc. Wash. 101, 444–465.

Xiaobo F., Pinthong K., Mkrtchyan H., Siripiyasing P., Kosyakova N., Supiwong W., et al. (2013). First detailed reconstruction of the karyotype of Trachypithecus cristatus (Mammalia: Cercopithecidae). Mol. Cytogenet. 6, 58. 10.1186/1755-8166-6-58 PubMed DOI PMC

Yang F., Graphodatsky A. S. (2009). “Animal probes and ZOO-fish,” in Fluorescence In Situ Hybridization (FISH). Ed. Liehr T. (Berlin: Springer; ). 10.1007/978-3-540-70581-9_29 DOI

Yang F., Trifonov V., Ng B. L., Kosyakova N., Carter N. P. (2009). “Generation of paint probes by flow-sorted and microdissected chromosomes,” in Fluorescence In Situ Hybridization (FISH). Ed. Liehr T. Application Guide (Berlin, Heidelberg: Springer; ). 10.1007/978-3-540-70581-9_3 DOI

Yano C. F., Bertollo L. A., Cioffi M. B. (2017. a). “Fish-FISH: molecular cytogenetics in fish species,” in Fluorescence in situ hybridization (FISH)– Application guide, 2nd Edn. Ed. Liehr T. (Berlin: Springer; ), 429–444.

Yano C. F., Bertollo L. A., Ezaz T., Trifonov V., Sember A., Liehr T., et al. (2017. b). Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity 118, 276–283. 10.1038/hdy.2016.83 PubMed DOI PMC

Yasukochi Y., Miura N., Nakano R., Sahara K., Ishikawa Y. (2011). Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays. PLoS One 6, e18843. 10.1371/journal.pone.0018843 PubMed DOI PMC

Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., et al. (2018). Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 9, 279. 10.3390/genes9060279 PubMed DOI PMC

Zwick M. S., Hanson R. E., McKnight T. D., Islam-Faridi M. N., Stelly D. M., Wing R. A., et al. (1997). A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40, 138–142. 10.1139/g97-020 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chromosomes of Asian cyprinid fishes: Novel insight into the chromosomal evolution of Labeoninae (Teleostei, Cyprinidae)

. 2024 ; 19 (2) : e0292689. [epub] 20240207

Small Body, Large Chromosomes: Centric Fusions Shaped the Karyotype of the Amazonian Miniature Fish Nannostomus anduzei (Characiformes, Lebiasinidae)

. 2023 Jan 11 ; 14 (1) : . [epub] 20230111

Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes)

. 2021 Dec ; 29 (3-4) : 391-416. [epub] 20211025

Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges

. 2021 Sep 13 ; 376 (1833) : 20200098. [epub] 20210726

Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation

. 2020 Jul 24 ; 11 (8) : . [epub] 20200724

An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes)

. 2020 Mar 28 ; 11 (4) : . [epub] 20200328

Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective

. 2020 Jan 13 ; 11 (1) : . [epub] 20200113

Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family

. 2019 ; 14 (12) : e0226746. [epub] 20191219

Deciphering the Origin and Evolution of the X1X2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes)

. 2019 Jul 22 ; 20 (14) : . [epub] 20190722

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace