Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31428127
PubMed Central
PMC6689988
DOI
10.3389/fgene.2019.00678
Knihovny.cz E-zdroje
- Klíčová slova
- chromosomal painting, comparative genomic hybridization (CGH), fishes, karyotype evolution, molecular cytogenetics, sex chromosome,
- Publikační typ
- časopisecké články MeSH
Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Institute of Human Genetics University Hospital Jena Jena Germany
Museu de Zoologia da Universidade de São Paulo São Paulo Brazil
Secretaria de Estado de Educação de Mato Grosso SEDUC MT Cuiabá Brazil
Zobrazit více v PubMed
Almeida-Toledo L. F., Foresti F. (2001). Morphologically differentiated sex chromosomes in Neotropical freshwater fish. Genetica 111, 91–100. 10.1023/A:1013768104422 PubMed DOI
Arai R. (2011). Fish karyotypes: a check list. 1st Edn. Tokyo: Springer. 10.1007/978-4-431-53877-6 DOI
Arcila D., Petry P., Ortí G. (2018). Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 16, e180016. 10.1590/1982-0224-20180016 DOI
Arcila D., Orti G., Vari R., Armbruster J. W., Stiassny M. L. J., Ko K. D., et al. (2017). Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1, 20. 10.1038/s41559-016-0020 PubMed DOI
Bachtrog D. (2013). Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124. 10.1038/nrg3366 PubMed DOI PMC
Barros L. C., Piscor D., Parise-Maltempi D., Feldberg E. (2018). Differentiation and evolution of the W chromosome in the fish species of Megaleporinus (Characiformes, Anostomidae). Sex. Dev. 12, 204–209. 10.1159/000489693 PubMed DOI
Basset P., Yannic G., Yang F., O’Brien P. C. M., Graphodatsky A. S., Ferguson-Smith M. A. (2006). Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Res. 14, 253–262. 10.1007/s10577-006-1041-x PubMed DOI
Bertollo L. A. C., Moreira-Filho O., Cioffi M. B. (2015). “Direct chromosome preparations from freshwater Teleost fishes,” in Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans. Eds. Ozouf-Costaz C., Pisano E., Foresti E., Almeida-Toledo L. F. (Boca Raton: CRC Press; ), 21–26. 10.1201/b18534-4 DOI
Bertollo L. A. C., Oliveira C., Molina W. F., Margarido V. P., Fontes M. S., Pastori M. C., et al. (2004). Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes). Heredity 93, 228–233. 10.1038/sj.hdy.6800511 PubMed DOI
Bitencourt J. A., Sampaio I., Ramos R. T. C., Vicari M. R., Affonso P. R. A. M. (2016). First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish 14, 90–95. 10.1089/zeb.2016.1333 PubMed DOI
Blanco D. R., Vicari M. R., Lui R. L., Artoni R. F., Almeida M. C., Traldi J. B., et al. (2014). Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica 142, 119–126. 10.1007/s10709-014-9759-4 PubMed DOI
Bracewell R. R., Bentz J. B., Sullivan B. S., Good J. M. (2017). Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nat. Commun. 8, 1953. 10.1038/s41467-017-01761-4 PubMed DOI PMC
Buckup P. A. (1998). “Relationships of the Characidiinae and phylogeny of characiform fishes (Teleostei: Characiformes),” in Phylogeny and classification of neotropical fishes. Eds. Malabarba L. R., Reis R. E., Vari R. P., Lucena Z. M. S., Lucena C. A. S. (Porto Alegre: EDIPUCRS; ), 123–144.
Cardoso A. L., Pieczarka J. C., Nagamachi C. Y. (2015). X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus. Genet. Mol. Biol. 38, 213–219. 10.1590/S1415-4757382220140189 PubMed DOI PMC
Cavalli G., Misteli T. (2013). Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299. 10.1038/nsmb.2474 PubMed DOI PMC
Charlesworth B., Wall J. D. (1999). Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. B 266, 51–56. 10.1098/rspb.1999.0603 DOI
Charlesworth D., Charlesworth B., Marais G. (2005). Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128. 10.1038/sj.hdy.6800697 PubMed DOI
Cioffi M. B., Camacho J. P. M., Bertollo L. A. C. (2011. a). Repetitive DNAs and differentiation of sex chromosomes in Neotropical fishes. Cytogenet. Genome Res. 132, 188–194. 10.1159/000321571 PubMed DOI
Cioffi M. B., Liehr T., Trifonov V., Molina W. F., Bertollo L. A. C. (2013). Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet. Genome Res. 141, 186–194. 10.1159/000354039 PubMed DOI
Cioffi M. B., Martins C., Centofante L., Jacobina U., Bertollo L. A. C. (2009). Chromosomal variability among allopatric populations of erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 125, 132–141. 10.1159/000227838 PubMed DOI
Cioffi M. B., Molina W. F., Artoni R. F., Bertollo L. A. C. (2012. a). “Chromosomes as tools for discovering biodiversity – the case of Erythrinidae fish family,” in Recent trends in cytogenetic studies – Methodologies and applications. Ed. Tirunilai P. (Rijeka: InTech Publisher; ), 125–146.
Cioffi M. B., Moreira-Filho O., Almeida-Toledo L. F., Bertollo L. A. C. (2012. b). The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 80, 2125–2139. 10.1111/j.1095-8649.2012.03272.x PubMed DOI
Cioffi M. B., Moreira-Filho O., Ráb P., Sember A., Molina W. F., Bertollo L. A. C. (2018). Conventional cytogenetic approaches-useful and indispensable tools in discovering fish biodiversity. Curr. Genet. Med. Rep. 6, 176–186. 10.1007/s40142-018-0148-7 DOI
Cioffi M. B., Sánchez A., Marchal J. A., Kosyakova N., Liehr T., Trifonov V., et al. (2011. b). Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species. Genetica 139, 1065. 10.1007/s10709-011-9610-0 PubMed DOI
Cioffi M. D. B., Yano C. F., Sember A., Bertollo L. A. C. (2017). Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. Genes 8, 258. 10.3390/genes8100258 PubMed DOI PMC
Devlin R. H., Nagahama Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364. 10.1016/S0044-8486(02)00057-1 DOI
Faria R., Navarro A. (2010). Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660–669. 10.1016/j.tree.2010.07.008 PubMed DOI
Fernandes C. A., Bally D., Silva V. F. B., Martins-Santos I. C. (2010). System of multiple sex chromosomes in Eigenmannia trilineata López & Castello, 1966 (Sternopygidae, Gymnotiformes) from Iguatemi River Basin, MS, Brazil. Cytologia 75, 463–466. 10.1508/cytologia.75.463 DOI
Fernandes C. A., Paiz L. M., Baumgärtner L., Margarido V. P., Vieira M. M. R. (2017). Comparative cytogenetics of the black ghost knifefish (Gymnotiformes: Apteronotidae): evidence of chromosomal fusion and pericentric inversions in karyotypes of two Apteronotus species. Zebrafish 14, 471–476. 10.1089/zeb.2017.1432 PubMed DOI
Fraser J., Williamson I., Bickmore W. A., Dostie J. (2015). An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347–372. 10.1128/MMBR.00006-15 PubMed DOI PMC
Freitas N. L., Al-Rikabi A. B. H., Bertollo L. A. C., Ezaz T., Yano C. F., Oliveira E. A., et al. (2018). Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Curr. Genomics 18, 01–08. 10.2174/1389202918666170711160528 PubMed DOI PMC
Froese R., Pauly D. (2018). FishBase: World Wide Web electronic publication. Available at: http://www.fishbase.org (Accessed October 25, 2018).
Gamble T. (2016). Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 25, 2114–2116. 10.1111/mec.13648 PubMed DOI
Gornung E. (2013). Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res. 141, 90–102. 10.1159/000354832 PubMed DOI
Guerrero R. F., Kirkpatrick M. (2014). Local adaptation and the evolution of chromosome fusions. Evolution 68, 2747–2756. 10.1111/evo.12481 PubMed DOI
Guiguen Y., Fostier A., Herpin A. (2019). “Sex determination and differentiation in fish: genetic, genomic, and endocrine aspects,” in Sex control in aquaculture. Eds. Wang H. P., Piferrer F., Chen S. L., Shen Z. G. (New Jersey: John Wiley & Sons Ltd; ), 35–63. 10.1002/9781119127291.ch2 DOI
Henning F., Moysés C. B., Calcagnotto D., Meyer A., de Almeida-Toledo L. F. (2011). Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity 106, 391. 10.1038/hdy.2010.82 PubMed DOI PMC
Henning F., Trifonov V., Ferguson-Smith M. A., de Almeida-Toledo L. F. (2008). Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei: Gymnotiformes). Cytogenet. Genome Res. 121, 55–58. 10.1159/000124382 PubMed DOI
Herpin A., Schartl M. (2015). Plasticity of gene-regulatory networks controlling sex-determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260–1274. 10.15252/embr.201540667 PubMed DOI PMC
Kawakami T., Butlin R. K., Cooper S. J. B. (2011). Chromosomal speciation revisited: modes of diversification in Australian morabine grasshoppers (Vandiemenella, viatica species group). Insects 2, 49–61. 10.3390/insects2010049 PubMed DOI PMC
Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., et al. (2013). Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8, e45519. 10.1371/journal.pone.0045519 PubMed DOI PMC
Kitano J., Peichel C. L. (2012). Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fishes 94, 549–558. 10.1007/s10641-011-9853-8 PubMed DOI PMC
Kitano J., Ross J. A., Mori S., Kume M., Jones F. C., Chan Y. F., et al. (2009). A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083. 10.1038/nature08441 PubMed DOI PMC
Kubát Z., Hobza R., Vyskot B., Kejnovský E. (2008). Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome 51, 350–356. 10.1139/G08-024 PubMed DOI
Levan A., Fredga K., Sandberg A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI
Liehr T. (2016). Benign and pathological gain or loss of genetic material - about microscopic and submicroscopic copy number variations (CNVs) in human genetics. Tsitologiia 58, 476–477. PubMed
Liu S., Hui T. H., Tan S. L., Hong Y. (2012). Chromosome evolution and genome miniaturization in minifish. PLoS One 7, e37305. 10.1371/journal.pone.0037305 PubMed DOI PMC
Machado T. C., Pansonato-Alves J. C., Pucci M. B., Nogaroto V., Almeida M. C., Oliveira C., et al. (2011). Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae). BMC Genet. 12, 65. 10.1186/1471-2156-12-65 PubMed DOI PMC
Margarido V. P., Bellafronte E., Moreira-Filho O. (2007). Cytogenetic analysis of three sympatric Gymnotus (Gymnotiformes, Gymnotidae) species verifies invasive species in the Upper Paraná River basin, Brazil. J. Fish Biol. 70, 155–164. 10.1111/j.1095-8649.2007.01365.x DOI
Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. (2009). Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Molecular . Genet. Genom. 281, 249–259. 10.1007/s00438-008-0405-7 PubMed DOI
Montiel E. E., Badenhorst D., Tamplin J., Burke R. L., Valenzuela N. (2017). Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 126, 105–113. 10.1007/s00412-016-0576-7 PubMed DOI
Moraes R. L. R., Bertollo L. A. C., Marinho M. M. F., Yano C. F., Hatanaka T., Barby F. F., et al. (2017). Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish 14, 536–546. 10.1089/zeb.2017.1465 PubMed DOI
Mrasek K., Heller A., Rubtsov N., Trifonov V., Starke H., Rocchi M., et al. (2001). Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet. Cell Genet. 93, 242–248. 10.1159/000056991 PubMed DOI
Nagamachi C. Y., Pieczarka J. C., Milhomem S. S. R., O’Brien P. C. M., de Souza A. C. P., Ferguson-Smith M. A. (2010). Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting. BMC Genet. 11, 28. 10.1186/1471-2156-11-28 PubMed DOI PMC
Netto-Ferreira A. L., Marinho M. M. F. (2013). New species of Pyrrhulina (Ostariophysi: Characiformes: Lebiasinidae) from the Brazilian Shield, with comments on a putative monophyletic group of species in the genus. Zootaxa 3664, 369–376. 10.11646/zootaxa.3664.3.7 PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková, et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. U.S.A. 110, 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC
Oliveira C., Andreata A. A., Almeida-Toledo L. F., Toledo Filho S. A. (1991). Karyotype and nucleolus organizer regions of Pyrrhulina cf. australis (Pisces, Characiformes, Lebiasinidae). Rev. Bras. Genet. 14, 685–690.
Oliveira E. A., Sember A., Bertollo L. A. C., Yano C. F., Ezaz T., Moreira-Filho O., et al. , (2018). Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma 127, 115–128. 10.1007/s00412-017-0648-3 PubMed DOI
Oliveira R. R., Feldberg E., dos Anjos M. B., Zuanon J. (2008). Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus(Siluriformes: Loricariidae) from the Amazon basin. Genetica 134, 243–249. 10.1007/s10709-007-9231-9 PubMed DOI
Pansonato-Alves J. C., Serrano É. A., Utsunomia R., Camacho J. P. M., da Costa Silva G. J., Vicari M. R., et al. (2014). Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS One 9, e107169. 10.1371/journal.pone.0107169 PubMed DOI PMC
Parise-Maltempi P. P., da Silva E. L., Rens W., Dearden F., O’Brien P. C., Trifonov V., et al. (2013). Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet. 14, 60. 10.1186/1471-2156-14-60 PubMed DOI PMC
Pendás A. M., Móran P., Freije J. P., Garcia-Vásquez E. (1994). Chromosomal mapping and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 67, 31–36. 10.1159/000133792 PubMed DOI
Pennell M. W., Kirkpatrick M., Otto S. P., Vamosi J. C., Peichel C. L., Valenzuela N., et al. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11, e1005237. 10.1371/journal.pgen.1005237 PubMed DOI PMC
Phillips R. B., Konkol N. R., Reed K. M., Stein J. D. (2001). Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo, and Salvelinus (Salmonidae). Genetica 111, 119–123. 10.1023/A:1013743431738 PubMed DOI
Pokorná M., Kratochvíl L., Kejnovský E. (2011). Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet. 12, 90. 10.1186/1471-2156-12-90 PubMed DOI PMC
Poltronieri J., Marquioni V., Bertollo L. A. C., Kejnovský E., Molina W. F., Liehr T., et al. (2014). Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet. Genome Res. 142, 40–45. 10.1159/000355908 PubMed DOI
Reed K. M., Bohlander S. K., Phillips R. B. (1995). Microdissection of the Y chromosome and fluorescence in situ hybridization analysis of the sex chromosomes of lake trout, Salvelinus namaycush. Chromosome Res. 3, 221–226. 10.1007/BF00713046 PubMed DOI
Sambrook J., Russell D. W. (2001). Molecular cloning: a laboratory manual. 3rd Edn. New York, NY: Cold Spring Harbor Laboratory Press.
Sangpakdee W., Tanomtong A., Fan X., Pinthong K., Weise A., Liehr T. (2016). Application of multicolor banding combined with heterochromatic and locus-specific probes identify evolutionary conserved breakpoints in Hylobates pileatus. Mol. Cytogenet. 9, 17. 10.1186/s13039-016-0228-x PubMed DOI PMC
Scacchetti P. C., Utsunomia R., Pansonato-Alves J. C., da Costa Silva G. J., Vicari M. R., Artoni R. F., et al. (2015). Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes). PLoS One 10, e0137231. 10.1371/journal.pone.0137231 PubMed DOI PMC
Schartl M., Schmid M., Nanda I. (2016). Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125, 553–571. 10.1007/s00412-015-0569-y PubMed DOI
Scheel J. J. (1973). Fish chromosomes and their evolution. Charlottenlund, Denmark: International Report Danmarks Akvarium, 22 pp.
Sember A., Bertollo L. A., Ráb P., Yano C. F., Hatanaka T., de Oliveira E. A., et al. (2018. b). Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front. Genet. 9, 71. 10.3389/fgene.2018.00071 PubMed DOI PMC
Sember A., Bohlen J., Šlechtová V., Altmanová M., Pelikánová Š., Ráb P. (2018. a). Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One 13, 1–27. 10.1371/journal.pone.0195054 PubMed DOI PMC
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. (2015). Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 15, 251. 10.1186/s12862-015-0532-9 PubMed DOI PMC
Smith D. A., Gordon I. J., Traut W., Herren J., Collins S., Martins D. J., et al. (2016). A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc. R. Soc. B 283, 20160821. 10.1098/rspb.2016.0821 PubMed DOI PMC
Soares R. X., Bertollo L. A. C., Cioffi M. B., Costa G. W. W. F., Molina W. F. (2014). Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective. Genet. Mol. Res. 13, 2470–2479. 10.4238/2014.April.3.19 PubMed DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. (2018). Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127, 141–150. 10.1007/s00412-017-0651-8 PubMed DOI PMC
Sumner A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306. 10.1016/0014-4827(72)90558-7 PubMed DOI
Symonová R., Howell W. (2018). Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes 9, 96. 10.3390/genes9020096 PubMed DOI PMC
Symonová R., Majtánová Z., Sember A., Staaks G. B., Bohlen J., Freyhof J., et al. (2013). Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 13, 42. 10.1186/1471-2148-13-42 PubMed DOI PMC
Symonová R., Sember A., Majtánová Z., Ráb P. (2015). “Characterization of fish genomes by GISH and CGH,” in Fish techniques, ray-fin fishes and chondrichthyans. Eds. Ozouf-Costaz C., Pisano E., Foresti F., de Almeida Toledo L. F. (Boca Ranton, FL: CRC Press; ), 118–131. 10.1201/b18534-17 DOI
Traut W., Sahara K., Otto T. D., Marec F. (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108, 173–180. 10.1007/s004120050366 PubMed DOI
van Doorn G. S., Kirkpatrick M. (2010). Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics 186, 629–645. 10.1534/genetics.110.118596 PubMed DOI PMC
Weise A., Kosyakova N., Voigt M., Aust N., Mrasek K., Löhmer S., et al. (2015). Comprehensive analyses of white-handed gibbon chromosomes enables access to evolutionary conserved breakpoints compared to the human genome. Cytogenet. Genome Res. 145, 42–49. 10.1159/000381764 PubMed DOI
Weitzman M., Weitzman S. H. (2003). “Lebiasinidae (Pencil fishes),” in Checklist of the freshwater fishes of South and Central America. Eds. Reis R. E., Kullander S. O., Ferraris C. J., Jr. (Porto Alegre: EDIPUCRS; ), 241–251.
Weitzman S. H., Vari R. P. (1988). Miniaturization in South American freshwater fishes: an overview and discussion. Proc. Biol. Soc. Wash. 101, 444–465.
Xiaobo F., Pinthong K., Mkrtchyan H., Siripiyasing P., Kosyakova N., Supiwong W., et al. (2013). First detailed reconstruction of the karyotype of Trachypithecus cristatus (Mammalia: Cercopithecidae). Mol. Cytogenet. 6, 58. 10.1186/1755-8166-6-58 PubMed DOI PMC
Yang F., Graphodatsky A. S. (2009). “Animal probes and ZOO-fish,” in Fluorescence In Situ Hybridization (FISH). Ed. Liehr T. (Berlin: Springer; ). 10.1007/978-3-540-70581-9_29 DOI
Yang F., Trifonov V., Ng B. L., Kosyakova N., Carter N. P. (2009). “Generation of paint probes by flow-sorted and microdissected chromosomes,” in Fluorescence In Situ Hybridization (FISH). Ed. Liehr T. Application Guide (Berlin, Heidelberg: Springer; ). 10.1007/978-3-540-70581-9_3 DOI
Yano C. F., Bertollo L. A., Cioffi M. B. (2017. a). “Fish-FISH: molecular cytogenetics in fish species,” in Fluorescence in situ hybridization (FISH)– Application guide, 2nd Edn. Ed. Liehr T. (Berlin: Springer; ), 429–444.
Yano C. F., Bertollo L. A., Ezaz T., Trifonov V., Sember A., Liehr T., et al. (2017. b). Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity 118, 276–283. 10.1038/hdy.2016.83 PubMed DOI PMC
Yasukochi Y., Miura N., Nakano R., Sahara K., Ishikawa Y. (2011). Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays. PLoS One 6, e18843. 10.1371/journal.pone.0018843 PubMed DOI PMC
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., et al. (2018). Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 9, 279. 10.3390/genes9060279 PubMed DOI PMC
Zwick M. S., Hanson R. E., McKnight T. D., Islam-Faridi M. N., Stelly D. M., Wing R. A., et al. (1997). A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40, 138–142. 10.1139/g97-020 PubMed DOI
An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes)