Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes)

. 2021 Dec ; 29 (3-4) : 391-416. [epub] 20211025

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34694531

Grantová podpora
302449/2018-3 conselho nacional de desenvolvimento científico e tecnológico
2020/11772-8 fundação de amparo à pesquisa do estado de são paulo
2020/11669-2 fundação de amparo à pesquisa do estado de são paulo
2018/14677-6 fundação de amparo à pesquisa do estado de são paulo
67985904 rvo of iapg cas, liběchov

Odkazy

PubMed 34694531
DOI 10.1007/s10577-021-09674-1
PII: 10.1007/s10577-021-09674-1
Knihovny.cz E-zdroje

Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.

Zobrazit více v PubMed

Al-Rikabi A, Liehr LB, Liehr T (2020) Glass-needle based chromosome microdissection – how to set up probes for molecular cytogenetics? Video J Clin Res 2:100004VAM08AR2020. https://doi.org/10.5348/100004VAM08AR2020TR DOI

Artoni RF, Bertollo LAC (2002) Evolutionary aspects of the ZZ/ZW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Heredity 89:15–19. https://doi.org/10.1038/sj.hdy.6800081 PubMed DOI

Artoni RF, Falcãoo JDN, Moreira-Filho O, Bertollo LAC (2001) An uncommon condition for a sex chromosome system in Characidae fish. Distribution and differentiation of the ZZ/ZW system in Triportheus. Chromosome Res 9:449–456. https://doi.org/10.1023/A:1011620226348 PubMed DOI

Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124. https://doi.org/10.1038/nrg3366 PubMed DOI PMC

Barby FF, Bertollo LAC, de Oliveira EA, Yano CF, Hatanaka T, Ráb P, Sember A, Ezaz T, Artoni RF, Liehr T, Al-Rikabi ABH, Trifonov V, de Oliveira EHC, Molina WF, Jegede OI, Tanomtong A, Cioffi MB (2019) Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH). Sci Rep 9:1112. https://doi.org/10.1038/s41598-019-38617-4 PubMed DOI PMC

Bellafronte E, Schemberger MO, Moreira-Filho O, Almeida MC, Artoni RF, Margarido VP, Vicari MR (2011) Chromosomal markers in Parodontidae: an analysis of new and reviewed data with phylogenetic inferences. Rev Fish Biol Fish 21:559–570. https://doi.org/10.1007/s11160-010-9177-3 DOI

Bellott DW, Skaletsky H, Cho T-J, Brown L, Locke D, Chen N, Galkina S, Pyntikova T, Koutseva N, Graves T, Kremitzki C, Warren WC, Clark AG, Gaginskaya E, Wilson RK, Page D (2017) Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat Genet 49:387–394. https://doi.org/10.1038/ng.3778 PubMed DOI PMC

Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102. https://doi.org/10.1016/j.tree.2008.09.010 PubMed DOI

Bertollo LAC, Cioffi MB, Moreira-Filho O (2015) Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, and dee Almeida-Toledo LF (eds) Fish cytogenetic techniques (Chondrichthyans and Teleosts), CRC Press, Inc, Endfield, pp 21–26. https://doi.org/10.1201/b18534-4

Blokhina YP, Nguyen AD, Draper BW, Burgess SM (2019) The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. 15:e1007730. https://doi.org/10.1371/journal.pgen.1007730 DOI

Bracewell R, Chatla K, Nalley MJ, Bachtrog D (2019) Dynamic turnover of centromeres drives karyotype evolution in Drosophila. eLife 8:1–47. https://doi.org/10.7554/eLife.49002 DOI

Cai L, Liu G, Wei Y, Zhu Y, Li J, Miao Z, Chen M, Yue Z, Yu L, Dong Z, Ye H, Sun W, Huang R (2021) Whole-genome sequencing reveals sex determination and liver high-fat storage mechanisms of yellowstripe goby (Mugilogobius chulae). Commun Biol 4:1–12. https://doi.org/10.1038/s42003-020-01541-9 DOI

Capel B (2017) Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 18:675–689. https://doi.org/10.1038/nrg.2017.60 PubMed DOI

Carvalho ML, Oliveira C, Foresti F (2002) Description of a ZZ/ZW sex chromosome system in Thoracocharax cf. stellatus (Teleostei, Characiformes, Gasteropelecidae). Genet Mol Biol 25:299–303. https://doi.org/10.1590/S1415-47572002000300008 DOI

Cazaux B, Catalan J, Veyrunes F, Douzery EJ, Britton-Davidian J (2011) Are ribosomal DNA clusters rearrangement hotspots?: a case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 11:124. https://doi.org/10.1186/1471-2148-11-124 PubMed DOI PMC

Chaiyasan P, Mingkwan B, Jantarat S, Suwannapoom C, Cioffi MB, Liehr T, Talumphai S, Tanomtong A, Supiwong W (2021) Classical and molecular cytogenetics of Belontia hasselti (Perciformes: Osphronemidae): insights into the zz/zw sex chromosome system. Biodiversitas 22:546–554. https://doi.org/10.13057/biodiv/d220205

Charlesworth D (2018) The guppy sex chromosome system and the sexually antagonistic polymorphism hypothesis for Y chromosome recombination suppression. Genes 9:264. https://doi.org/10.3390/genes9050264 DOI PMC

Charlesworth D (2021a) When and how do sex-linked regions become sex chromosomes? Evolution 75:569–581. https://doi.org/10.1111/evo.14196 PubMed DOI

Charlesworth D (2021b) The timing of genetic degeneration of sex chromosomes. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2015.0615 DOI

Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Phil Trans R Soc B 355:1563–1572. https://doi.org/10.1098/rstb.2000.0717 PubMed DOI PMC

Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128. https://doi.org/10.1038/sj.hdy.6800697 PubMed DOI

Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff J-N, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q et al (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260. https://doi.org/10.1038/ng.2890 PubMed DOI

Cioffi MB, Bertollo LAC (2010) Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X PubMed DOI

Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC (2009) Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res 125:132–141. https://doi.org/10.1159/000227838 PubMed DOI

Cioffi MB, Liehr T, Trifonov V, Molina WF, Bertollo LAC (2013) Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res 141:186–194. https://doi.org/10.1159/000354039 PubMed DOI

Connallon T, Olito C, Dutoit L, Papoli H, Ruzicka F, Yong L (2018) Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philos Trans R Soc B 373:20170423. https://doi.org/10.1098/rstb.2017.0423 DOI

da Rosa R, Bellafronte E, Moreira-Filho O, Margarido VP (2006) Constitutive heterochromatin, 5S and 18S rDNA genes in Apareiodon sp. (Characiformes, Parodontidae) with a ZZ/ZW sex chromosome system. Genetica 128:159–166. https://doi.org/10.1007/s10709-005-5700-1 PubMed DOI

da Silva EL, de Borba RS, Centofante L, Miyazawa CS, Parise-Maltempi PP (2012) Cytogenetic analysis in Thoracocharax stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay river basin, Mato Grosso, Brazil. Comp Cytogenet 6:323–333. https://doi.org/10.3897/CompCytogen.v6i3.3637 PubMed DOI PMC

da Silva M, Matoso DA, Artoni RF, Feldberg E (2014) New approach data in electric fish (Teleostei: Gymnotus): sex chromosome evolution and repetitive DNA. Zebrafish 11:528–535. https://doi.org/10.1089/zeb.2013.0966 PubMed DOI

de Barros CL, Piscor D, Parise-Maltempi PP, Feldberg E (2018) Differentiation and evolution of the W chromosome in the fish species of Megaleporinus (Characiformes, Anostomidae). Sex Dev 12:204–209. https://doi.org/10.1159/000489693 DOI

de Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF, Troy WP, Cioffi MB (2017) Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish 14:536–546. https://doi.org/10.1089/zeb.2017.1465 PubMed DOI

de Moraes RLR, Sember A, Bertollo LAC, de Oliveira EA, Ráb P, Hatanaka T, Marinho MMF, Liehr T, Al-Rikabi ABH, Feldberg E, Viana PF, Cioffi MB (2019) Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae). Front Genet 10:678. https://doi.org/10.3389/fgene.2019.00678 PubMed DOI PMC

de Oliveira EA, Sember A, Bertollo LAC, Yano CF, Ezaz T, Moreira-Filho O, Hatanaka T, Trifonov V, Liehr T, Al-Rikabi ABH, Ráb P, Pains H, Cioffi MB (2018) Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY PubMed DOI

Deon GA, Glugoski L, Vicari MR, Nogaroto V, de Menezes Vavalcante Sassi F, de Bello Cioffi M, Liehr T, Bertollo LAC, Moreira-Filho O (2020) Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes). Genes 11:1366. https://doi.org/10.3390/genes11111366 DOI PMC

Diniz D, Moreira-Filho O, Bertollo LAC (2008a) Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae). Genetica 133:85–91. https://doi.org/10.1007/s10709-007-9187-9 PubMed DOI

Diniz D, Laudicina A, Cioffi MB, Bertollo LAC (2008b) Microdissection and whole chromosome painting. Improving sex chromosome analysis in Triportheus (Teleostei, Characiformes). Cytogenet Genome Res 122:163–168. https://doi.org/10.1159/000163094 PubMed DOI

Diniz D, Laudicina A, Bertollo LAC (2009) Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae). Genet Mol Biol 32:37–41. https://doi.org/10.1590/S1415-47572009005000017 PubMed DOI PMC

dos Santos RA, Medrado AS, Diniz D, Oliveira C, de Mello Affonso PRA (2016) ZZ/ZW sex chromosome system in the endangered fish Lignobrycon myersi Miranda-Ribeiro, 1956 (Teleostei, Characiformes, Triportheidae). Comp Cytogenet 10:245–254. https://doi.org/10.3897/CompCytogen.v10i2.8435 DOI

Felip A, Fujiwara A, Young WP, Wheeler PA, Noakes M, Phillips RB, Thorgaard GH (2004) Polymorphism and differentiation of rainbow trout Y chromosomes. Genome 47:1105–1113. https://doi.org/10.1139/g04-059 PubMed DOI

Fernandino JI, Hattori RS (2019) Sex determination in neotropical fish: implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 273:172–183. https://doi.org/10.1016/j.ygcen.2018.07.002 PubMed DOI

Ferreira M, De Jesus IS, Viana PF, Garcia C, Matoso DA, Cioffi MB, Bertollo LAC, Feldberg E (2020) Chromosomal evolution in Aspredinidae (Teleostei, Siluriformes): insights on intra- and interspecific relationships with related groups. Cytogenet Genome Res 160:539–553. https://doi.org/10.1159/000511125 PubMed DOI

Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. genome organisation and nuclear architecture. Chromosoma 114:212–229. https://doi.org/10.1007/s00412-005-0016-6 PubMed DOI

Fricke R, Eschmeyer WN, Van der Laan R (eds) (2021) Eschmeyer’s catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp . Accessed 5 February 2021

Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D (2015) Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol Biol Evol 32:1296–1309. https://doi.org/10.1093/molbev/msv023 PubMed DOI

Gammerdinger WJ, Kocher TD (2018) Unusual diversity of sex chromosomes in African cichlid fishes. Genes 9:480. https://doi.org/10.3390/genes9100480 DOI PMC

Ghigliotti L, Cheng CHC, Bonillo C, Coutanceau JP, Pisano E (2013) In situ gene mapping of two genes supports independent evolution of sex chromosomes in cold-adapted Antarctic fish. BioMed Res Int 243938. https://doi.org/10.1155/2013/243938

Glugoski L, Deon G, Schott S, Vicari MR, Nogaroto V, Moreira-Filho O (2020) Comparative cytogenetic analyses in Ancistrus species (Siluriformes: Loricariidae). Neotrop Ichthyol 18:e200013. https://doi.org/10.1590/1982-0224-2020-0013 DOI

Gornung E (2013) Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res 141:90–102. https://doi.org/10.1159/000354832 PubMed DOI

Graves JAM (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Ann Rev Genet 42:565–586. https://doi.org/10.1146/annurev.genet.42.110807.091714 DOI

Guiguen Y, Fostier A, Herpin A (2019) Sex determination and differentiation in fish: genetic, genomic, and endocrine aspects. In: Wang HP, Piferrer F, Chen S-L (eds) Sex control in aquaculture, 1st edn. Wiley, Hoboken, pp 35–63

Henning F, Trifonov V, Ferguson-Smith MA, de Almeida-Toledo LF (2008) Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei: Gymnotiformes). Cytogenet Genome Res 121:55–58. https://doi.org/10.1159/000124382 PubMed DOI

Henning F, Moysés CB, Calcagnotto D, Meyer A, de Almeida-Toledo LF (2011) Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity 106:391–400. https://doi.org/10.1038/hdy.2010.82 PubMed DOI

Heule C, Salzburger W, Böhne A (2014) Genetics of sexual development: an evolutionary playground for fish. Genetics 196:579–591. https://doi.org/10.1534/genetics.114.161158 PubMed DOI PMC

Honeycutt JL, Deck CA, Miller SC, Severance ME, Atkins EB, Luckenbach JA, Buckel JA, Daniels HV, Rice JA, Borski RJ, Godwin J (2019) Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-42944-x DOI

Jeffries DL, Gerchen JF, Scharmann M, Pannell J (2021) A neutral model for the loss of recombination on sex chromosomes. Philos Trans R Soc B 376:20200096. https://doi.org/10.1098/rstb.2020.0096 DOI

Jensen MP, Allen CD, Eguchi T, Bell IP, LaCasella EL, Hilton WA, Hof CAM, Dutton PH (2018) Environmental warming and feminization of one of the largest sea turtle populations in the world. Curr Biol 28:154–159. https://doi.org/10.1016/j.cub.2017.11.057 PubMed DOI

Johnson Pokorná MJ, Kratochvíl L (2016) What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev 91:1–12. https://doi.org/10.1111/brv.12156 PubMed DOI

Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohar S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet 8:e1002798. https://doi.org/10.1371/journal.pgen.1002798 PubMed DOI PMC

Kitano J, Peichel CL (2012) Turnover of sex chromosomes and speciation in fishes. Environ Biol Fish 94:549–558. https://doi.org/10.1007/s10641-011-9853-8 DOI

Kondo M, Nanda I, Hornung U, Schmid M, Schartl M (2004) Evolutionary origin of the medaka Y chromosome. Curr Biol 14:1664–1669. https://doi.org/10.1016/j.cub.2004.09.026 PubMed DOI

Kuhl H, Guiguen Y, Höhne C, Kreuz E, Du K, Klopp C, Lopez-Roques C, Santidrian Yebra-Pimentel E, Ciorpac M, Gessner J, Holostenco D, Kleiner W, Kohlmann K, Lamatsch DK, Prokopov D, Bestin A et al (2021) A 180 My-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos Trans R Soc B 376:20200089. https://doi.org/10.1098/rstb.2020.0089 DOI

Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967. https://doi.org/10.1126/science.286.5441.964 PubMed DOI

Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x DOI

Lima TG (2014) Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat Commun 5:4743. https://doi.org/10.1038/ncomms5743 PubMed DOI

Malabarba MC (2004) On the paleoichthyofauna from the Aiuruoca Tertiary Basin, Minas Gerais State, Brazil. Ameghiniana 41:515–519

Mank JE, Avise JC (2009) Evolutionary diversity and turn-over of sex determination in teleost fishes. Sex Dev 3:60–67. https://doi.org/10.1159/000223071 PubMed DOI

Mariguela TC, Roxo FF, Foresti F, Oliveira C (2016) Phylogeny and biogeography of Triportheidae (Teleostei: Characiformes) based on molecular data. Mol Phylogenet Evol 96:130–139. https://doi.org/10.1016/j.ympev.2015.11.018 PubMed DOI

Marquioni V, Bertollo LAC, Diniz D, Cioffi MB (2013) Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron 45:129–135. https://doi.org/10.1016/j.micron.2012.11.008 PubMed DOI

Martínez P, Viñas AM, Sánchez L, Díaz N, Ribas L, Piferrer F (2014) Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front Genet 5:340. https://doi.org/10.3389/fgene.2014.00340 PubMed DOI PMC

Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE, Stiassny LJ, Arroyave J, Chang J, Faircloth BC, MacGuigan DJ, Harrington RC, Benine RC, Burns MD, Hoekzema K, Sanches NC et al (2021) Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst Biol syab040. https://doi.org/10.1093/sysbio/syab040

Meisel RP (2020) Evolution of sex determination and sex chromosomes: a novel alternative paradigm. BioEssays 2020:1900212. https://doi.org/10.1002/bies.201900212 DOI

Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M (2015) Turnover of sex chromosomes in Celebensis group medaka fishes. G3 Genes Genom Genet 2015:2685–2691. https://doi.org/10.1534/g3.115.021543 DOI

Nanda I, Schories S, Tripathi N, Dreyer C, Haaf T, Schmid M, Schartl M (2014) Sex chromosome polymorphism in guppies. Chromosoma 123:373–383. https://doi.org/10.1007/s00412-014-0455-z PubMed DOI

Natri HM, Merilä J, Shikano T (2019) The evolution of sex determination associated with a chromosomal inversion. Nat Commun 10:145. https://doi.org/10.1038/s41467-018-08014-y PubMed DOI PMC

Nirchio M, Oliveira C, Ferreira IA, Granado A, Ron E (2007) Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae). Genet Mol Biol 30:25–30. https://doi.org/10.1590/S1415-47572007000100007 DOI

Ortiz-Barrientos D, Engelstädter J, Rieseberg LH (2016) Recombination rate evolution and the origin of species. Trends Ecol Evol 31:226–236. https://doi.org/10.1016/j.tree.2015.12.016 PubMed DOI

Ota K, Tateno Y, Gojobori T (2003) Highly differentiated and conserved sex chromosome in fish species (Aulopus japonicus: Teleostei, Aulopidae). Gene 317:187–193. https://doi.org/10.1016/S0378-1119(03)00702-9 PubMed DOI

Pan Q, Feron R, Jouanno E, Darras H, Herpin A, Koop B, Rondeau E, Goetz FW, Larson WA, Bernatchez L, Tringali M, Curran SS, Saillant E, Denys GPJ, von Hippel FA et al (2021) The rise and fall of the ancient northern pike master sex determining gene. eLife 10:e62858. https://doi.org/10.7554/eLife.62858 PubMed DOI PMC

Pansonato-Alves JC, Serrano ÉA, Utsunomia R, Camacho JPM, da Costa Silva GJ, Vicari MR, Artoni RF, Oliveira C, Foresti F (2014) Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS ONE 9:e107169. https://doi.org/10.1371/journal.pone.0107169 PubMed DOI PMC

Parise-Maltempi PP, da Silva EL, Rens W, Dearden F, O’Brien PCM, Trifonov V, Ferguson-Smith MA (2013) Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet 14:60. https://doi.org/10.1186/1471-2156-14-60 PubMed DOI PMC

Peichel C, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA (2020) Assembly of a young vertebrate Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 21:177. https://doi.org/10.1186/s13059-020-02097-x PubMed DOI PMC

Pendas AM, Moran P, Freije JP, Garcia-Vazquez E (1994) Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Genome Res 67:31–36. https://doi.org/10.1159/000133792 DOI

Pennell MW, Kirkpatrick M, Otto S, Vamosi JC, Peichel CL, Valenzuela N, Kitano J (2015) Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet 11:e1005237. https://doi.org/10.1371/journal.pgen.1005237 PubMed DOI PMC

Perrin N (2021) Sex-chromosome evolution in ranid frogs: what role for sex-antagonistic genes? Philos Trans R Soc B 376:20200094. https://doi.org/10.1098/rstb.20200094 DOI

Ponnikas S, Sigeman H, Abbott JK, Hansson B (2018) Why do sex chromosomes stop recombining? Trends Genet 34:492–503. https://doi.org/10.1016/j.tig.2018.04.001 PubMed DOI

Pucci MB, Nogaroto V, Bertollo LAC, Moreira-Filho O, Vicari MR (2018) The karyotypes and evolution of ZZ/ZW sex chromosomes in the genus Characidium (Characiformes, Crenuchidae). Comp Cytogenet 12:421–438. https://doi.org/10.3897/CompCytogen.v12i3.28736 PubMed DOI PMC

Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A et al (2015) Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527–1538. https://doi.org/10.1016/j.cell.2015.10.071 PubMed DOI

Rice WR (1987) The accumulation of sexually antagonistic genes as a selection agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41:911–914. https://doi.org/10.1111/j.1558-5646.1987.tb05864.x PubMed DOI

Ross JA, Urton JR, Boland J, Shapiro MD, Peichel CL (2009) Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet 5:e1000391. https://doi.org/10.1371/journal.pgen.1000391 PubMed DOI PMC

Salvadori S, Deiana AM, Deidda F, Lobina C, Mulas A, Coluccia E (2018) XX/XY sex chromosome system and chromosome markers in the snake eel Ophisurus serpens (Anguilliformes: Ophichtidae). Mar Biol Res 14:158–164. https://doi.org/10.1080/17451000.2017.1406665 DOI

Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harb 3:2100

Santi-Rampazzo AP, Nishiyama PB, Ferreira PEB, Martins-Santos IC (2007) Cytogenetic analysis and description of the sexual chromosome determination system ZZ/ZW of species of the fish genus Serrapinnus (Characidae, Cheirodontinae). Genet Mol Res 6:504–509 PubMed

Sardell JM, Kirkpatrick M (2020) Sex differences in the recombination landscape. Am Nat 195:361–379. https://doi.org/10.1086/704943 PubMed DOI

Scacchetti PC, Utsunomia R, Pansonato-alves JC (2015) Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes). PLoS ONE 10:e0137231. https://doi.org/10.1371/journal.pone.0137231 PubMed DOI PMC

Schartl M, Schmid M, Nanda I (2016) Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125:553–571. https://doi.org/10.1007/s00412-015-0569-y PubMed DOI

Schemberger MO, Bellafronte E, Nogaroto V, Almeida MC, Schühli GS, Artoni RF, Moreira-Filho O, Vicari MR (2011) Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 139:1499–1508. https://doi.org/10.1007/s10709-012-9649-6 PubMed DOI

Schmid M, Steinlein C, Yano CF, Cioffi MB (2016) Hypermethylated chromosome regions in nine fish species with heteromorphic sex chromosomes. Cytogenet Genome Res 147:169–178. https://doi.org/10.1159/000444067 DOI

Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 15:251. https://doi.org/10.1186/s12862-015-0532-9 PubMed DOI PMC

Sember A, Bertollo LAC, Ráb P, Yano CF, Hatanaka T, de Oliveira EA, Cioffi MB (2018) Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front Genet 9:71. https://doi.org/10.3389/fgene.2018.00071 PubMed DOI PMC

Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MB (2021) Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc B 376:20200098. https://doi.org/10.1098/rstb.2020.0098 DOI

Shen G, Wang P (2019) Environmental sex determination and sex differentiation in teleosts – how sex is established. In: Wang HP, Piferrer F, Chen S-L (eds) Sex control in aquaculture, 1st edn. Wiley, Hoboken, pp 85–115

Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A (2018) Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127:141–150. https://doi.org/10.1007/s00412-017-0651-8 PubMed DOI

Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306. https://doi.org/10.1016/0014-4827(72)90558-7 PubMed DOI

Terencio ML, Schneider CH, Gross MC, Moreira da Silva A, Feldberg E, Porto JIR (2008) Comparative cytogenetics of Carnegiella marthae and Carnegiella strigata (Characiformes, Gasteropelecidae) and description of a ZZ/ZW sex chromosome system. Genet Mol Biol 31:231–234. https://doi.org/10.1590/S1415-47572008000200011 DOI

Toder R, Wienberg J, Voullaire L, O’Brien PC, Marshall Maccarone P, Graves JA (1997) Shared DNA sequences between the X and Y chromosomes in the tammar wallaby – evidence for independent additions to eutherian and marsupial sex chromosomes. Chromosoma 106(94–98):106. https://doi.org/10.1007/s004120050228 DOI

Tomaszkiewicz M, Medvedev P, Makova KD (2017) Y and W chromosome assemblies: approaches and discoveries. Trends Genet 33:266–282. https://doi.org/10.1016/j.tig.2017.01.008 PubMed DOI

Traut W, Winking H (2001) Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res 9:659–672. https://doi.org/10.1023/A:1012956324417 PubMed DOI

Utsunomia R, Scacchetti PC, Hermida M, Fernández-Cebrián R, Taboada X, Fernández C, Bekaert M, Mendes NJ, Robledo D, Mank JE, Taggart JB, Oliveira C, Foresti F, Martínez P (2017) Evolution and conservation of Characidium sex chromosomes. Heredity 119:237–244. https://doi.org/10.1038/hdy.2017.43 PubMed DOI PMC

Valenzuela N, Literman R, Neuwald JL, Mizoguchi B, Iverson JB, Riley JL, Litzgus JD (2019) Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci Rep 9:4254. https://doi.org/10.1038/s41598-019-40597-4 PubMed DOI PMC

Venere PC, Souza IL, Martins C, Oliveira C (2008) Occurrence of ZZ/ZW sex chromosomes in Thoracocharax stellatus fish (Characiformes, Gasteropelecidae) from the Araguaia River, South America. Genetica 133:109–112. https://doi.org/10.1007/s10709-007-9194-x PubMed DOI

Vicoso B (2019) Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat Ecol Evol 3:1632–1641. https://doi.org/10.1038/s41559-019-1050-8 PubMed DOI

Volff JN, Nanda I, Schmid M, Schartl M (2007) Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 1:85–99. https://doi.org/10.1159/000100030 PubMed DOI

Wasko AP, Cesar ACG, Martins C, Galetti PM Jr (2001) A ZZ/ZW sex chromosome system in Cheirodontidae fish. Chromosome Sci 5:145–148

Weitzman SH, Palmer L (2003) Family Gasteropelecidae. In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of South and Central America, Porto Alegre, Edipucrs, pp 101–103

Wellenreuther M, Bernatchez L (2018) Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol 33:427–440. https://doi.org/10.1016/j.tree.2018.04.002 PubMed DOI

Wright AE, Dean R, Zimmer F, Mank JE (2016) How to make a sex chromosome. Nat Commun 7:12087. https://doi.org/10.1038/ncomms12087 PubMed DOI PMC

Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP (2009) Generation of paint probes by flowsorted and microdissected chromosomes. In: Liehr T (ed) Fluorescence in situ hybridization (FISH) – application guide. Springer, Berlin, pp 35–52 DOI

Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, Cioffi MB (2014) Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS ONE 9:e90946. https://doi.org/10.1371/journal.pone.0090946 PubMed DOI PMC

Yano CF, Bertollo LAC, Liehr T, Troy WP, Cioffi MB (2016) W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): an ongoing process narrated by repetitive sequences. J Hered 107:342–348. https://doi.org/10.1093/jhered/esw021 PubMed DOI PMC

Yano CF, Bertollo LAC, Cioffi MB (2017a) Fish-FISH: molecular cytogenetics in fish species. In: Fluorescence in situ hybridization (FISH). Springer-Verlag, Berlin, p 429–443. https://doi.org/10.1007/978-3-662-52959-1_44

Yano CF, Bertollo LAC, Ezaz T, Trifonov V, Sember A, Liehr T, Cioffi MB (2017b) Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity 118:276–283. https://doi.org/10.1038/hdy.2016.83 PubMed DOI

Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MB (2017c) Evolutionary dynamics of rDNAs and U2 small nuclear DNAs in Triportheus (Characiformes, Triportheidae): high variability and particular syntenic organization. Zebrafish 14:146–154. https://doi.org/10.1089/zeb.2016.1351 PubMed DOI

Yano CF, Merlo MA, Portela-Bens S, Cioffi MDB, Bertollo LAC, Santos-Júnior CD, Rebordinos L (2020) Evolutionary dynamics of multigene families in Triportheus (Characiformes, Triportheidae): a transposon mediated mechanism? Front Mar Sci 7:6. https://doi.org/10.3389/fmars.2020.00006

Zwick MS, Hanson RE, McKnight TD, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ (1997) A rapid procedure for the isolation of C PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace