Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26573692
PubMed Central
PMC4647339
DOI
10.1186/s12862-015-0532-9
PII: 10.1186/s12862-015-0532-9
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- heterochromatin * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace veterinární MeSH
- máloostní klasifikace genetika MeSH
- řeky MeSH
- ribozomální DNA genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin * MeSH
- ribozomální DNA MeSH
- transpozibilní elementy DNA MeSH
BACKGROUND: Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS: Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION: Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
Zobrazit více v PubMed
Nelson JS. Fishes of the world. 4. Hoboken: Wiley; 2006.
Saitoh K, Sado T, Doosey MH, Bart HL, Jr, Inoue JG, Nishida M, et al. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi) Zool J Linn Soc. 2011;161:633–62.
Kottelat M. Conspectus cobitidum: an inventory of loaches of the world (Teleostei: Cypriniformes: Cobitoidei) Raffles Bull Zool. 2012;Suppl 26:1–199.
Bohlen J, Völker M, Rábová M, Ráb P. Note on the banded karyotype of the enigmatic South Asian loach Vaillantella maassi (Cypriniformes: Vaillantellidae) Ichthyol Res. 2008;55:82–4.
Šlechtová V, Bohlen J, Freyhof J, Ráb P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol Phylogenet Evol. 2006;39:529–41. PubMed
Saitoh K, Chen W-J, Mayden RL. Extensive hybridization and tetrapolyploidy in spined loach fish. Mol Phylogenet Evol. 2010;56:1001–10. PubMed
Arai R. Fish karyotypes: a check list. 1. Tokyo: Springer Japan; 2011.
Vasil’eva ED, Vasil’ev VP. Sibling species in genus Cobitis (Cobitidae). Cobitis rossomeridionalis sp. nova. J Ichthyol. 1998;38:580–90.
Bohlen J, Ritterbusch D. Which factors affect sex ratio of spined loach (genus Cobitis) in lake Müggelsee? Environ Biol Fishes. 2000;59:347–52.
Bohlen J, Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J Fish Biol. 2001;59(Suppl A):75–89.
Bănărescu P. Zoogeography of fresh waters. Wiesbaden: AULA-Verlag GmbH; 1992.
Gaffaroglu M, Karasu M, Unal S. Karyotype of river loach Turcinoemacheilus kosswigi Bănărescu and Nalbant, 1964 (Cypriniformes, Balitoridae) from the Euphrates river, Turkey. J Agric Sci Technol. 2012;14:821–6.
Kumar R, Sahoo PK, Vishwanath W, Barat A. Karyotype of a new loach Schistura obliquofascia and a mahseer Puntius chelynoides from Kumaun Hills of Himalaya. Cytologia. 2014;79:243–6.
Esmaeili HR, Pirvar Z, Ebrahimi M, Geiger MF. Karyological and molecular analysis of three endemic loaches (Actinopterygii: Cobitoidea) from Kor River basin, Iran. Mol Biol Res Commun. 2015;4:1–13. PubMed PMC
Boroń A. Chromosome banding studies of Noemacheilus barbatulus (Linnaeus, 1758) from Poland. Caryologia. 1995;48:239–46.
Mazik EY, Toktosunov AT. The karyotypes of three species of loaches of the genus Nemachilus Hasselt (Cypriniformes, Cobitidae) Tsitologiya. 1984;26:960–2.
Suzuki A. Chromosome and DNA studies of eight species in the family Cobitidae (Pisces, Cypriniformes) La Kromosomo II. 1992;67/68:2275–82.
Khuda-Bukhsh AR, Chanda T, Barat A. Karyomorphology and evolution in some Indian hillstream fishes with particular reference to polyploidy in some species. In: Uyeno T, Arai R, Taniuchi T, Matsuura K, editors. Indo-Pacific fish biology. Tokyo: Ichthyological Society of Japan; 1986. pp. 886–98.
Yu XJ, Zhou T, Li YC, Li K, Zhou M, editors. Chromosomes of Chinese freshwater fishes. Beijing: Science Press; 1989.
Cui J, Ren X, Yu Q. Nuclear DNA content variation in fishes. Cytologia. 1991;56:425–9.
Collares-Pereira MJ, Madeira JM, Ráb P. Spontaneous triploidy in the stone loach Noemacheilus barbatulus (Balitoridae) Copeia. 1995;2:483–4.
Völker M, Sonnenberg R, Ráb P, Kullmann H. Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). II: cytogenetic and mitochondrial DNA analyses demonstrate karyotype differentiation and its evolutionary direction in C. riggenbachi. Cytogenet Genome Res. 2006;115:70–83. PubMed
Völker M, Ráb P. Direct chromosome preparation from regenerating fin tissue. In: Ozouf-Costaz C, Pisano E, Foresti F, de Almeida Toledo LF, editors. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. Enfield: CRC Press, Inc.; 2015. pp. 37–41.
Haaf T, Schmid M. An early stage of ZZ/ZW sex chromosomes differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes) Chromosoma. 1984;89:37–41.
Behr W, Honikel K, Hartmann G. Interaction of the RNA polymerase inhibitor chromomycin with DNA. Eur J Biochem. 1969;9:82–92. PubMed
Kapuściński J, Szer W. Interactions of 4′,6-diamidine-2-phenylindole with synthetic polynucleotides. Nucleic Acids Res. 1979;6:3519–34. PubMed PMC
Mayr B, Ráb P, Kalat M. Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–6. PubMed
Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet Cell Genet. 1992;60:229–35. PubMed
Howell WM, Black DA. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980;36:1014–5. PubMed
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–20.
Graham DE. The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal Biochem. 1978;85:609–13. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. PubMed
Neusser M. Karyotypevolution, genomorganisation und zellkernarchitektur der neuweltaffen. München: Ludwig-Maximilians-Universität; 2004.
Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. PubMed PMC
Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol. 2008;463:205–39. PubMed
Šlechtová V, Bohlen J, Tan HH. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol. 2007;44:1358–65. PubMed
Chen W-J, Miya M, Saitoh K, Mayden RL. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene. 2008;423:125–34. PubMed
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/96/NT. Nucleic Acids Res. 1999;41:95–8.
Farris JS, Källerjö M, Kluge AG, Butt C. Testing significance of incongruence. Cladistics. 1994;10:315–9.
Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods), v. 4.0 b10. Sunderland: Sinauer Associates; 2002.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2012;41:D36–42. PubMed PMC
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. PubMed
Jurka J, Kapitonov VV, Pavlíček A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7. PubMed
Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebartes. Proc Natl Acad Sci U S A. 1989;86:7049–53. PubMed PMC
Bănărescu P, Nalbant TT. A generical classification of Nemacheilinae with description of two new genera (Teleostei: Cypriniformes: Cobitidae) 1995. pp. 429–96.
Prokofiev AM. Morphological classification of loaches (Nemacheilinae) J Ichthyol. 2010;50:827–913.
Kottelat M. Indochinese Nemacheilines, a revision of nemacheiline loaches (Pisces: Cypriniformes) of Thailand, Burma, Laos, Cambodia and southern Viet Nam. München: Pfeil; 1990. pp. 1–262.
Vasil’ev VP. Evolutionary karyology of fishes. Moscow: Nauka Press; 1985.
Rishi KK, Sharma MP, Mankotia R. Somatic chromosomes of three Indian teleosts. Matsya. 1977;3:6–9.
Kim IS, Lee EH, Son YM. Morphological variation and geographic distribution of two species of Nemacheiline loaches (Pisces, Cobitidae) from Korea. Korean J Zool. 1988;31:283–94.
Klinkhardt M, Tesche M, Greven H. Database of fish chromosomes. Magdeburg: Westarp Wissenschaften; 1995.
Mank JE, Avise JC. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–7. PubMed
Ohno S. Evolution by gene duplication. New York: Springer; 1970.
Kohn M, Högell J, Vogel W, Minich P, Kehrer-Swatzki H, Graves JAM, et al. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet. 2006;22:203–10. PubMed
Matthey R. L’ evolution de la formule chromosomiale chez les vertebrees. Experientia. 1945;1:50–6.
Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42. PubMed PMC
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–9. PubMed
Guerrero RF, Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution. 2014;68:2747–56. PubMed
Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos MA, editor. Repetitive DNA. 2012. pp. 197–221. PubMed
King M. Species evolution: the role of chromosome change. Cambridge: University Press; 1993.
Hale DW, Greenbaum IF. Synapsis of a chromosomal pair heterozygous for a pericentric inversion and the presence of a heterochromatic short arm. Cytogenet Cell Genet. 1988;48:55–7. PubMed
Völker M, Sonnenberg R, Ráb P, Kullmann H. Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). III: extensive karyotypic variability associated with low mitochondrial haplotype differentiation in C. bivittatum. Cytogenet Genome Res. 2007;116:116–26. PubMed
Schmid M, Guttenbach M. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma. 1988;97:101–14. PubMed
Ráb P, Rábová M, Reed KM, Phillips RB. Chromosomal characteristics of ribosomal DNA in the primitive semionotiform fish, longnose gar Lepisosteus osseus. Chromosome Res. 1999;7:475–80. PubMed
Fontana F, Tagliavini J, Congiu L. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica. 2001;111:359–73. PubMed
Pendás AM, Morán P, García-Vázquez E. Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Cell Genet. 1993;63:128–30. PubMed
Morescalchi MA, Liguori I, Rocco L, Stingo V. Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae) Genetica. 2007;131:209–16. PubMed
Deiana AM, Cau A, Salvadori S, Coluccia E, Cannas R, Milia A, et al. Major and 5S ribosomal sequences of the largemouth bass Micropterus salmoides (Perciformes, Centrarchidae) are localized in GC-rich regions of the genome. Chromosome Res. 2000;8:213–8. PubMed
Affonso PRAM, Galetti PM., Jr Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae) Genetica. 2005;123:227–33. PubMed
de Lima-Filho PA, Bertollo LAC, Cioffi MB, Costa GWWF, Molina WF. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies (Ctenogobius, Gobiidae) Cytogenet Genome Res. 2014;142:197–203. PubMed
Caputo V, Marchegiani F, Sorice M, Olmo E. Heterochromatin heterogeneity and chromosome variability in four species of gobiid fishes (Perciformes: Gobiidae) Cytogenet Cell Genet. 1997;79:266–71. PubMed
Ene AC. Chromosomal polymorphism in the goby Neogobius eurycephalus (Perciformes: Gobiidae) Mar Biol. 2003;142:583–8.
Morescalchi MA, Stingo V, Capriglione T. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA. Mar Genomics. 2011;4:25–31. PubMed
Rábová M, Ráb P, Boroń A, Bohlen J, Janko K, Šlechtová V, et al. Cytogenetics of bisexual species and their asexual hybrid clones in european spined loaches, genus cobitis. I. Karyotypes and extensive polymorphism of major ribosomal sites in four parental species. Abstracts of 16th european colloqium on animal cytogenetics and gene mapping. Cytogenet Genome Res. 2004;106:1–24.
Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ. Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet Genome Res. 2005;109:507–11. PubMed
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res. 2013;141:90–102. PubMed
Hastie ND, Allshire RC. Human telomeres: fusion and interstitial sites. Trends Genet. 1989;5:326–31. PubMed
Redi CA, Garagna S, Della Valle G, Bottiroli G, Dell’Orto P, Viale G, et al. Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma. 1990;99:11–7. PubMed
Molina WF, Galetti PM., Jr Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5 s rRNA genes. Genet Mol Biol. 2002;25:373–7.
Rosa KO, Ziemniczak K, de Barros AV, Nogaroto V, Almeida MC, Cestari MM, et al. Numeric and structural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loricariidae): fusion points carrying 5S rDNA or telomere sequence vestiges. Rev Fish Biol Fish. 2012;22:739–49.
Morán P, Martínez JL, Garcia-Vásquez E, Pendás AM. Sex chromosome linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss) Cytogenet Cell Genet. 1996;75:145–50. PubMed
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364.
Bertollo LAC, Born GG, Dergam JA, Fenocchio AS, Moreira-Filho O. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res. 2000;8:603–13. PubMed
Centofante L, Bertollo LAC, Moreira-Filho O. Cytogenetic characterization and description of an XX/XY1Y2 sex chromosome system in catfish Harttia carvalhoi (Siluriformes, Loricariidae) Cytogenet Genome Res. 2006;112:320–4. PubMed
de Oliveira RR, Feldberg E, dos Anjos MB, Zuanon J. Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus (Siluriformes: Loricariidae) from the Amazon basin. Genetica. 2008;134:243–9. PubMed
Traut W, Sahara K, Otto TD, Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–80. PubMed
Meyne J, Baker JR, Hobart HH, Hsu TC, Ryder OA, Ward OG, et al. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. PubMed
Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res. 2008;122:219–28. PubMed
Ocalewicz K. Telomeres in fishes. Cytogenet Genome Res. 2013;141:114–25. PubMed
Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y. Chromosomal evolution in the Brazilian lizards of genus Leposoma (Squamata, Gymnopthalmidae) from Amazon and Atlantic rain forests: banding patterns and FISH of telomeric sequences. Hereditas. 1999;131:15–21. PubMed
Ocalewicz K, Furgala-Selezniow G, Szmyt M, Lisboa R, Kucinski M, Lejk AM, et al. Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica. 2013;141:409–16. PubMed PMC
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–40. PubMed
Garrido-Ramos MA, de la Herrán R, Rejón CR, Rejón CR. A satellite DNA of the Sparidae family (Pisces, Perciformes) associated with telomeric sequences. Cytogenet Cell Genet. 1998;83:3–9. PubMed
Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010;10:271. PubMed PMC
Guillén AKZ, Hirai Y, Tanoue T, Hirai H. Transcriptional repression mechanisms of nucleolus organizer regions (NORs) in humans and chimpanzees. Chromosome Res. 2004;12:225–37. PubMed
Amemiya CT, Gold JR. Chromosomal NORs as taxonomic and systematic characters in North American cyprinid fishes. Genetica. 1988;76:81–90.
Rábová M, Ráb P, Ozouf-Costaz C. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in a loach fish, Cobitis vardarensis (Ostariophysi, Cobitidae) detected by different banding techniques and fluorescence in situ hybridization (FISH) Genetica. 2001;111:413–22. PubMed
Boron A, Ozouf-Costaz C, Coutanceau J-P, Woroniecka K. Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia (Pisces, Cobitidae) from a diploid population and a diploid-tetraploid population. Genetica. 2006;128:71–9. PubMed
Gromicho M, Coutanceau J-P, Ozouf-Costaz C, Collares-Pereira MJ. Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae) Chromosome Res. 2006;14:297–306. PubMed
Pereira CSA, Aboim MA, Ráb P, Collares-Pereira MJ. Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae) Heredity. 2014;112:343–50. PubMed PMC
Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae) BMC Evol Biol. 2011;11:124. PubMed PMC
Pedrosa-Harand A, de Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerra M. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet. 2006;112:924–33. PubMed
Milhomem SSR, Scacchetti PC, Pieczarka JC, Ferguson-Smith MA, Pansonato-Alves JC, O’Brien PCM, et al. Are NORs always located on homeologous chromosomes? A FISH investigation with rDNA and whole chromosome probes in Gymnotus fishes (Gymnotiformes) PLoS One. 2013;8:e55608. PubMed PMC
Miller DA, Dev VG, Tantravahi R, Miller O. Supression of human nucleolar organizer activity in mouse-human somatic hybrid cells. Exp Cell Res. 1976;101:235–43. PubMed
Martins C, Wasko AP. Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR, editor. Focus on genome research. Hauppauge: Nova; 2004. pp. 335–63.
Mantovani M, Abel LDS, Moreira-Filho O. Conserved 5S and variable 45S rDNA chromosomal localisation revealed by FISH in Astyanax scabripinnis (Pisces, Characidae) Genetica. 2005;123:211–6. PubMed
Martins C, Galetti PM., Jr Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica. 2001;111:439–46. PubMed
Martins C, Galetti PM., Jr Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes) Chromosome Res. 1999;7:363–7. PubMed
Drouin G, de Sá MM. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol. 1995;12:481–93. PubMed
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res. 2013;141:103–13. PubMed
Pisano E, Ghigliotti L. Ribosomal genes in notothenioid fishes: focus on the chromosomal organisation. Mar Genomics. 2009;2:75–80. PubMed
Collares-Pereira MJ, Ráb P. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae) – re-examination by FISH. Genetica. 1999;105:301–3. PubMed
Tigano C, Rocco L, Ferrito V, Costagliola D, Pappalardo AM, Stingo V. Chromosomal mapping and molecular characterization of ribosomal RNA genes in Lebias fasciata (Teleostei, Cyprinodontidae) Genetica. 2004;121:95–100. PubMed
Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175:477–85. PubMed PMC
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120:351–7. PubMed
Raskina O, Belyayev A, Nevo E. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci U S A. 2004;101:14818–23. PubMed PMC
Zhang X, Eickbush MT, Eickbush TH. Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics. 2008;180:1617–26. PubMed PMC
da Silva M, Matoso DA, Vicari MR, de Almeida MC, Margarido VP, Artoni RF. Physical mapping of 5S rDNA in two species of knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes) Cytogenet Genome Res. 2011;134:303–7. PubMed
Nakajima RT, Cabral-de-Mello DC, Valente GT, Venere PC, Martins C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol. 2012;12:198. PubMed PMC
Costa GWWF, Cioffi MB, Bertollo LAC, Molina WF. Transposable elements in fish chromosomes: a study in the marine Cobia species. Cytogenet Genome Res. 2013;141:126–32. PubMed
Silva DMZA, Pansonato-Alves JC, Utsunomia R, Daniel SN, Hashimoto DT, Oliveira C, et al. Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): dispersive location, association and co-localization in the genome. Genetica. 2013;141:329–36. PubMed
Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13:42. PubMed PMC
Ichiyanagi K, Nishihara H, Duvernell DD, Okada N. Acquisition of endonuclease specificity during evolution of L1 retrotransposon. Mol Biol Evol. 2007;24:2009–15. PubMed
Gibbons JG, Branco AT, Yu S, Lemos B. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun. 2014;5:4850. PubMed
Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A. 2015;112:2485–90. PubMed PMC
Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene. 2012;509:7–15. PubMed
Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol. 2013;22:1503–17. PubMed
Ozouf-Costaz C, Brandt J, Körting C, Pisano E, Bonillo C, Coutanceau J-P, et al. Genome dynamics and chromosomal localization of the non-LTR retrotransposons Rex1 and Rex3 in Antarctic fish. Antarct Sci. 2004;16:51–7.
Fast satellite DNA evolution in Nothobranchius annual killifishes
Present and Future Salmonid Cytogenetics
An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes)