Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24220087
PubMed Central
PMC3931169
DOI
10.1038/hdy.2013.110
PII: hdy2013110
Knihovny.cz E-zdroje
- MeSH
- chiméra * MeSH
- Cyprinidae genetika MeSH
- genom MeSH
- hybridizace genetická MeSH
- karyotyp MeSH
- populační genetika MeSH
- ribozomální DNA MeSH
- syntenie MeSH
- telomery MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Portugalsko MeSH
- Názvy látek
- ribozomální DNA MeSH
Understanding the mechanisms underlying diversification and speciation by introgressive hybridization is currently one of the major challenges in evolutionary biology. Here, the analysis of hybridization between two pairs of Iberian Leuciscinae provided new data on independent hybrid zones involving Achondrostoma oligolepis (AOL) and Pseudochondrostoma duriense (PDU), and confirmed the occurrence of hybrids between AOL and Pseudochondrostoma polylepis (PPO). A multilevel survey combining morphological, genetic and cytogenomic markers on a vast population screening successfully sorted the selected fishes as admixed. Results were similar in both AOL × PDU and AOL × PPO systems. Overall, hybrid morphotypes, cytogenomic data and genetic profiling indicated preferential backcrossing and suggested AOL as a major genomic contributor. Moreover, results implied AOL as more permissive to introgression than PDU or PPO. Although PDU- and PPO-like individuals appeared more resilient to genome modifications, AOL appeared to be more involved and affected by the ongoing hybridization events, as chromosomal translocations were only found in AOL-like individuals. All hybrids analysed evidenced extensive ribosomal DNA (rDNA) polymorphism that was not found in parental species, but usually seen falling within the range of possible parental combinations. Yet, transgressive phenotypes that cannot be explained by normal recombination, including more rDNA clusters than expected or the occurrence of syntenic rDNAs, were also detected. Present results proved rapid genomic evolution providing the genetic novelty for species to persist. In addition, although the ultimate consequences of such apparently extensive and recurrent events remain unknown, modern genome-wide methodologies are of great promise towards answering questions concerning the causes, dynamics and impacts of hybridization.
Zobrazit více v PubMed
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–246. PubMed
Aboim M, Cunha C, Coelho MM. Redistribution of the geographical ranges of the Iberian cyprinid genus Pseudochondrostoma based on a phylogenetic analysis: implications for the historical rearrangements of the north-western Iberian drainages. J Fish Biol. 2009;74:1337–1346. PubMed
Aboim M, Mavárez J, Bernatchez L, Coelho MM. Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. J Evol Biol. 2010;23:817–828. PubMed
Almaça C. Contribuition à la connaissance des poissons des eaux intérieures du Portugal (in French) Rev Fac Cienc Univ Lisboa. 1965;13:225–262.
Broughton RE, Vedala KC, Crowl TM, Ritterhouse LL. Current and historical hybridization with differential introgression among three species of cyprinid fishes (genus Cyprinella) Genetica. 2011;139:699–707. PubMed
Coelho MM. The straight-mouth Portuguese Chondrostoma Agassiz, 1835. Taxonomic position and geographic distribution of Ch. polylepis Steindachner, 1865 and Ch. willkommii Steindachner, 1866, with the description of a new subspecies Ch. polylepis duriensis. Arq Mus Bocage. 1985;3:13–38.
Collares-Pereira MJ. On the systematic position of the Iberian Cyprinidae forms arcasi (Steindachner, 1866) and macrolepidotus (Steindachner, 1866) of the genus Rutilus. Arq Mus Bocage. 1979;6:361–393.
Collares-Pereira MJ, Coelho MM. Biometrical analysis of Chondrostoma polylepis × Rutilus arcasi natural hybrids (Osteichthyes-Cypriniformes-Cyprinidae) J Fish Biol. 1983;23:495–509.
Costedoat C, Pech N, Chappaz R, Gilles A. Novelties in hybrid zones: crossroads between population genomic and ecological approaches. PLoS One. 2007;2:e357. PubMed PMC
Dobigny G, Yang F. Comparative cytogenetics in the genomics era: cytogenomics comes of age. Chromosome Res. 2008;16:1–4. PubMed
Dowling TE, Secor CL. The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst. 1997;28:593–619.
Fontdevila A. Hybrid genome evolution by transposition. Cytogenet Genome Res. 2005;110:49–55. PubMed
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma. 1997;106:44–52. PubMed
Gante HF, Collares-Pereira MJ, Coelho MM. Introgressive hybridisation between two Iberian Chondrostoma species (Teleostei, Cyprinidae) revisited: new evidence from morphology, mitochondrial DNA, allozymes and NOR-phenotypes. Folia Zool. 2004;53:423–432.
Gerber A, Tibbets C, Dowling T. The role of introgressive hybridization in the evolution of the Gila robusta complex (Teleostei: Cyprinidae) Evolution. 2001;55:2028–2039. PubMed
Gromicho M, Coelho M, Alves M, Collares-Pereira MJ. Cytogenetic analysis of Anaecypris hispanica and its relationship with the paternal ancestor of the diploid-polyploid Squalius alburnoides complex. Genome. 2006;49:1621–1627. PubMed
Gromicho M, Collares-Pereira MJ.2007The evolutionary role of hybridization and polyploidy in an Iberian cyprinid fish—a cytogenetic reviewIn: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds)Fish Cytogenetics Science Publishers: Enfield, NH, USA; 41–67.
Gromicho M, Coutanceau J-P, Ozouf-Costaz C, Collares-Pereira MJ. Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae) Chromosome Res. 2006;14:297–306. PubMed
Hashimoto D, Ferguson-Smith M, Rens W, Prado F, Foresti F, Porto-Foresti F. Cytogenetic mapping of H1 histone and ribosomal RNA genes in hybrids between catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum. Cytogenet Genome Res. 2012;360:1–5. PubMed
Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. PubMed PMC
Kirtiklis L, Porycka K, Borón A, Coutanceau J-P, Dettai A. Use of the chromosomal co-location of the minor 5S and the major 28S rDNA as a cytogenetic marker within the genus Leuciscus (Pisces, Cyprinidae) Folia Biol. 2010;58:245–249. PubMed
Lajbner Z, Šlechtová V, Šlechta V, Svátora M, Berrebi P, Kotlík P. Rare and asymmetrical hybridization of the endemic Barbus carpathicus with its widespread congener Barbus barbus. J Fish Biol. 2009;74:418–436. PubMed
Levan A, Fredga K, Sandberg A. Nomenclature for centromeric positions on chromosomes. Hereditas. 1964;52:201–220.
Mable BK. Polyploids and hybrids in changing environments: winners or losers in the struggle for adaptation. Heredity. 2013;110:95–96. PubMed PMC
Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20:229–237. PubMed
Mavárez J, Linares M. Homoploid hybrid speciation in animals. Mol Ecol. 2008;17:4181–4185. PubMed
Pereira C, Neto A, Collares-Pereira MJ. Cytogenetic survey of species of two distinct genera of Iberian nases (Cyprinidae, Leuciscinae) that hybridize extensively in nature. I. Evidence of a similar and conserved chromosome pattern with some few species-specific markers at macro-structural level. Genetica. 2009;137:285–291. PubMed
Pereira C, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae) Genetica. 2012;140:485–495. PubMed
Phillips RB, Reed KM. Application of fluorescence in situ hybridization (FISH) techniques to fish genetics: a review. Aquaculture. 1996;140:197–216.
Rampin M, Bi K, Bogart J, Collares-Pereira MJ. Methodological improvements on genomic in situ hybridization (GISH) for identifying parental chromosome sets in hybrids of fish species with small genome size. Comp Cytogenet. 2012;6:287–300. PubMed PMC
Rieseberg L, Archer M, Wayne R. Transgressive segregation, adaptation and speciation. Heredity. 1999;83:363–372. PubMed
Robalo JI, Almada VC, Levy A, Doadrio I. Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol. 2007;42:362–372. PubMed
Rossi AR, Milana V, Hett AK, Tancioni L. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica. 2012;140:469–476. PubMed
Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes): a review. Folia Zool. 1995;44:193–214.
Santos VH, Foresti F, Oliveira C, Almeida-Toledo LF, Toledo-Filho SA, Bernardino G. Synaptonemal complex analysis in the fish species Piaractus mesopotamicus and Colossoma macropomum, and in their interspecific hybrid. Caryologia. 2002;55:73–79.
Scribner KT, Page KS, Bartron ML. Hybridization in freshwater species: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fish. 2001;10:293–323.
Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207. PubMed
Steindachner F. Icthyologischer Bericht über eine nach Spanien und Portugal unternommene Reise (Zweit Fortsetzung) (in German) Sitzungsb Kais Akad Wiss. 1866;54:6–27.
Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2012;108:179–189. PubMed PMC
Zhu HP, Ma DM, Gui JF. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res. 2006;14:767–776. PubMed