Genomic Organization of Repetitive DNA Elements and Extensive Karyotype Diversity of Silurid Catfishes (Teleostei: Siluriformes): A Comparative Cytogenetic Approach
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
401962/2016-4 and 302449/2018-3
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2018/22033-1
Fundação de Amparo à Pesquisa do Estado de São Paulo
88881.136128/2017-01
CAPES/Alexander von Humboldt
PHD/0165/2559 and MRG6080020
Thailand Research Fund (TRF)
PubMed
31331072
PubMed Central
PMC6678683
DOI
10.3390/ijms20143545
PII: ijms20143545
Knihovny.cz E-zdroje
- Klíčová slova
- CGH, FISH, chromosome banding, fish cytotaxonomy, rDNA classes,
- MeSH
- cytogenetické vyšetření MeSH
- genetická variace * MeSH
- genom * MeSH
- genomika * metody MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- pruhování chromozomů MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- srovnávací genomová hybridizace MeSH
- sumci klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.
Department of Genetics and Cytology Yerevan State University Yerevan 0025 Armenia
Institute of Human Genetics University Hospital Jena Jena 07747 Germany
School of Agricultural of Technology Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
Zobrazit více v PubMed
Kottelat M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool. 2013;27:1–663.
Fricke R., Eschmeyer W., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. California Academy of Sciences; San Francisco, CA, USA: 2019.
Bornbusch A.H. Phylogenetic relationships within the Eurasian catfish family Siluridae (Pisces: Siluriformes), with comments on generic validities and biogeography. Zool. J. Linn. Soc. 1995;115:1–46. doi: 10.1111/j.1096-3642.1995.tb02322.x. DOI
Kobayakawa M. Systematic revision of the catfish genus Silurus, with description of a new species from Thailand and Burma. Jpn. J. Ichthyol. 1989;36:155–186. doi: 10.1007/BF02914319. DOI
Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Publications Kottelat; Berlin, Germany: 2007.
Bogutskaya N.G., Naseka A.M., Shedko S.V., Vasileva E.D., Chereschnev I.A. The fishes of the Amur River: Updated check-list and zoogeography. Ichtyological Explor. Freshw. 2008;19:301–366.
Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Bornbusch A.H. Monophyly of the catfish family Siluridae (Teleostei: Siluriformes), with a critique of previous hypotheses of the family’s relationships. Zool. J. Linn. Soc. 1991;101:105–120. doi: 10.1111/j.1096-3642.1991.tb00888.x. DOI
Hardman M. The phylogenetic relationships among non-diplomystid catfishes as inferred from mitochondrial cytochrome b sequences; the search for the ictalurid sister taxon (Otophysi: Siluriformes) Mol. Phylogenet. Evol. 2005;37:700–720. doi: 10.1016/j.ympev.2005.04.029. PubMed DOI
Mo T. Anatomy, relationships and systematics of the Bagridae (Teleostei: Siluroidei) with a hypothesis of siluroid phylogeny. Theses Zool. 1991;17:1–216.
Pinna M.C.C. Ph.D. dissertation. City University of New York; New York, NY, USA: 1993. Higher-level phylogeny of Siluriformes (Teleostei, Ostariophysi), with a new classification of the order.
Diogo R. Higher-level phylogeny of Siluriformes: An overview. In: Arratia G., Kapoor B.G., editors. Catfishes Science. Science Publishers; Enfield, UK: 2003. pp. 353–384.
Sullivan J.P., Lundberg J.G., Hardman M. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol. Phylogenet. Evol. 2006;41:636–662. doi: 10.1016/j.ympev.2006.05.044. PubMed DOI
Stone R. The last of the Leviathans. Science. 2007;316:1684–1688. doi: 10.1126/science.316.5832.1684. PubMed DOI
Linhart O., Šĕtch L., Švarc J., Rodina M., Audebert J.P., Grecu J., Billard R. The culture of the European catfish, Silurus glanis, in the Czech Republic and in France. Aquat. Living Resour. 2002;15:139–144. doi: 10.1016/S0990-7440(02)01153-1. DOI
Saenjundaeng P. Encyclopedia of Freshwater Fishes in Thailand. Klungnana Vitthaya Press; Khon Kaen, Thailand: 2014.
Chapman F.A., Fitz-Coy S.A., Thunberg E.M., Adams C.M. United States of America trade in ornamental fish. J. World Aquac. Soc. 1997;28:1–10. doi: 10.1111/j.1749-7345.1997.tb00955.x. DOI
Oliveira C., Almeida-Toledo L.F., Foresti F. Karyotypic evolution in Neotropical fishes. In: Pisano E., Ozouf-Costaz C., Foresti F., Kapoor B.G., editors. Fish Cytogenetics. Science Publishers; Enfield, UK: 2007. pp. 111–164.
Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos M.A., editor. Repetitive DNA. Volume 7. Karger Publishers; Basel, Switzerland: 2012. pp. 197–221. PubMed
Cioffi M.B., Moreira-Filho O., Ráb P., Sember A., Molina W.F., Bertollo L.A.C. Conventional cytogenetic approaches—useful and indispensable tools in discovering fish biodiversity. Curr. Genet. Med. Rep. 2018;6:176–186. doi: 10.1007/s40142-018-0148-7. DOI
Cioffi M.B., Bertollo L.A.C., Villa M.A., de Oliveira E.A., Tanomtong A., Yano C.F., Supiwong W., Chaveerach A. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes) PLoS ONE. 2015;10:e0130199. doi: 10.1371/journal.pone.0130199. PubMed DOI PMC
Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42–52. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Moraes R.L.R., Bertollo L.A.C., Marinho M.M.F., Yano C.F., Hatanaka T., Barby F.F., Troy W.P., Cioffi M.B. Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae) Zebrafish. 2017;14:536–546. doi: 10.1089/zeb.2017.1465. PubMed DOI
Sember A., Bertollo L.A.C., Ráb P., Yano C.F., Hatanaka T., de Oliveira E.A., Cioffi M.B. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:1–12. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by zoo-FISH and comparative genomic hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Verma J., Lakra W.S., Kushwaha B., Sirajuddin M., Nagpure N.S., Kumar R. Characterization of two freshwater silurid catfish using conventional and molecular cytogenetic techniques. J. Genet. 2011;90:319–322. doi: 10.1007/s12041-011-0061-2. PubMed DOI
Lee H.Y., Yu C.H., Jeon S.K., Lee H.S. The karyotype analysis on 29 species of freshwater fish in Korea. Bull. Inst. Basic Sci. Inha Univ. 1983:79–86.
Donsakul T. Chromosome study on three species of silurid fishes, Kryptopterus cryptopterus, K. bleekeri and Ompok bimaculatus, of Thailand; Proceedings of the 18th Congress on Science and Technology of Thailand; Bangkok, Thailand. 1992; pp. 398–399.
Donsakul T. A study of chromosome in freshwater shark (Wallago attu), helicopter catfish (W. leerii), twisted-jaw sheatfish (Belodontichthys dinema) and glass catfish (Kryptopterus bicirrhis) from Thailand; Proceedings of the 34th Kasetsart University Annual Conference (Fishery Section); Bangkok, Thailand. 1996; pp. 367–377.
Simporn B. Ph.D Dissertation. Khon Kaen University; Khon Kaen, Thailand: 2015. Cytogenetic of Sheatfish (Family Siluridae) in Thailand.
Hinegardner R., Rosen D.E. Cellular DNA content and the evolution of teleostean fishes. Amer. Natur. 1972;106:621–644. doi: 10.1086/282801. DOI
Magtoon W., Donsakul T. Karyotypes of Silurichthys phaiosoma, S. schneideri, Ompok fumidus and Kryptopterus macrocephalus (Family Siluridae) from Thailand; Proceedings of the 35th Congress on Science and Technology of Thailand; Bangkok, Thailand. 2009; p. B0084.
Pinthong K., Supiwong W., Simporn B., Chooseangjaew S., Kakampuy W., Tanomtong A. A First chromosomal and nucleolar organizer regions (NORs) Analyses of Chevey’s sheetfish, Micronema cheveyi (Siluriformes, Siluridae) Cytologia (Tokyo) 2017;82:435–441. doi: 10.1508/cytologia.82.435. DOI
Rishi K.K. Mitotic and meiotic chromosomes of a teleost, Callichrous bimaculatus (Bloch) with indications of male heterogamety. Cienc. Cult. 1976;28:1171–1173.
Khuda-Bukhsh A.R. Cytogenetic analyses in eight species of teleostean fishes (Pisces): Karyotypes, multiple Ag-NORs, sex chromosomes. Res. Rev. BioSci. 2007;1:47–52.
Sharma R. Chromosomal stuides on two endangered catfishes Ompok bimaculatus (Bloch) and Ompak pabda (Hamilton-Buchanan) Indian J. Anim. Sci. 2008
Gomonteir B., Tanomtong A., Supiwong W., Sikhruadong S., Neeratanaphan L., Sanoamuang L. Standardized karyotype and idiogram of two-spot glass catfish, Ompok bimaculatus (Siluriformes, Siluridae) in Thailand by conventional and Ag-NOR staining techniques. Cytologia (Tokyo). 2012;77:459–464. doi: 10.1508/cytologia.77.459. DOI
Das R.K., Kar R.N. Somatic chromosome analysis of a siluroid fish, Rita chrysea Day. Caryologia. 1977;30:247–253. doi: 10.1080/00087114.1977.10796698. DOI
Datta S., Rahman M.M., Haque M.A. Chromosomal studies on Ompok pabda (Hamilton) Online J. Biol. Sci. 2003;3:460–465.
Khuda Bukhsh A.R., Chanda T. Somatic chromosomes of three species of hill stream fishes from Assam. In: Das P., Jhingran A.G., editors. Fish Genetics in India. Today Tomorrow’s Printers and Publishers; New Delhi, India: 1989. pp. 69–73.
Supiwong W., Tanomtong A., Jumrusthanasan S., Khakhong S., Leelarasamee K., Sanoamuang L. A First karyotype analysis and chromosomal characteristic of nucleolar organizer regions (NORs) of common sheathfish, Micronema apogon (Siluriformes, Siluridae) in Thailand. Cytologia (Tokyo). 2012;77:53–58. doi: 10.1508/cytologia.77.53. DOI
Iliadou K., Rackham B.D. The chromosomes of a catfish Parasilurus aristotelis from Greece. Jpn. J. Ichthyol. 1990;37:144–148.
Rab P., Karakousis Y., Peios C. Karyotype of Silurus aristotelis with reference to the cytotaxonomy of the genus Silurus (Piscus, Siluridae) Folia Zool. (Czech Republic) 1994;43:75–81.
Nogusa S. Chromosome studies in Pisces, II. On the chromosomes of Sillago sihama (Sillaginidae) and Parasilurus asotus (Siluridae) Jpn. J. Genet. 1951;26:153–155. doi: 10.1266/jjg.26.153. DOI
Muramoto J. On the chromosomes of Parasilurus asotus (Linne) Chrom. Inf. Serv. 1969;10:18–19.
Fujioka Y. A comparative study of the chromosomes in Japanese freshwater fishes I. A study of the somatic chromosome of common catfish Parasilurus asotus (Linne) and forktailed bullhead Paleobagrus nudiceps (Sauvage) Bull. Fac. Educ. Yamaguchi Univ. 1973;23:191–195.
Arai R., Katsuyama I. A chromosome study on four species of Japanese catfishes (Pisces, Siluriformes) Bull. Nat. Sci. Museum. 1974:187–192.
Ojima Y. Cellular DNA contents of fishes determined by flow cytometry. La Kromosomo II. 1990;57:1871–1888.
Kim D.S. Karyotypes of nine species of the Korean catfishes (Teleostomi: Siluriformes) Korean J. Genet. 1982;4:57–68.
Yunhan H., Tun Z. Karyotypic study of two species of Chinese catfishes (Siluridae) J. Wuhan Univ. Nat. Sci. Ed. 1983;3
Yu X.J., Zhou T., Li Y.C., Li K., Zhou M. Chromosomes of Chinese Freshwater Fishes. Science Press; Beijing, China: 1989.
Cui J.X., Ren X.H., Yu Q.X. Nuclear DNA content variation in fishes. Cytologia. 1991;56:425–429.
Zhang S.M. Nucleolar organizer regions in four species of fishes. Chromosom. Inf. Serv. 1992;53:6–8.
Li Y., Li K., Zhou T. Cellular DNA content of fourteen species of freshwater fishes. Acta Genet. Sin. 1983;10:384–389.
Kim D.S., Kim I.B., Huh H.T., Park I. Cytogenetic analysis of catfish, Silurus asotus (Teleostomi: Siluriformes) Ocean Polar Res. 1988;10:33–37.
Yin H.B., Sun Z.W., Pan W. The karyotype study on triploid catfish (Silurus asotus) J. Fish. China. 1996;20:178–182.
Meszáros B., Bozhko S., Marian T., Krasznai Z. About karyotype of Silurus glanis. Halászat. 1975;21:110–111.
Krasznai Z. Silurus glanis kariólogial és szerologiai vizsgálatának eredményei. Results of karyological and serological studies in catfish Silurus glanis. Halászat. 1978;24:2–4.
Ráb P. Karyotype of European catfish Silurus glanis (Siluridae, Pisces), with remarks on cytogenetics of siluroid fishes. Folia Zool. 1981;32:271–286.
Sofradzija A. Chromosomes of the species Silurus glanis L. 1758 (Siluridae, Pisces) Genetics. 1982;14:103–110.
Vujosevic M., Zivkovic C., Desanka R., Jurisic S., Cakic P. The chromosomes of 9 fish species from Dunav basin in Yugoslavia. Ichthyologia. 1983;15:29–40.
Vasilev V.P. Evolutionary Karyology of Fishes. Nauka Publishers; Moscow, Russia: 1985.
Al-Sabti K. Cytogenetic studies on five species of Pisces from Yugoslavia. Cytobios. 1987;49:175–188. PubMed
Ráb P., Mayr B., Roth P. Chromosome banding study of European catfish, Silurus glanis (Pisces, Siluridae) Genetica. 1991;83:153–157.
Hu G., Sun G., Zhang Y., Gu Q., Li G., Tang H., Fan L. Karyotype analyses of northern sheatfish (Silurus soldatovi) J. Dalian Fish. Coll. 2005;20:318–321.
Rishi K.K., Singh J. Chromosomal analysis of the Indian silurid, Wallago attu (Schneider) (Family: Siluridae) Chrom Inf. Serv. 1983;34:10–11.
Sharma O.P., Tripathi N.K. Somatic chromosome analysis of Wallago attu, a siluroid fish from Jammu (J & K), India. Perspect. Cytol. Genet. 1984;4:437–439.
Oliveira C., Gosztonyi A.E. A cytogenetic study of Diplomystes mesembrinus (Teleostei, Siluriformes, Diplomystidae) with a discussion of chromosome evolution in Siluriforms. Caryologia. 2000;53:31–37. doi: 10.1080/00087114.2000.10589178. DOI
Kappas I., Vittas S., Pantzartzi C.N., Drosopoulou E., Scouras Z.G. A time-calibrated mitogenome phylogeny of catfish (Teleostei: Siluriformes) PLoS ONE. 2016;11:e0166988. doi: 10.1371/journal.pone.0166988. PubMed DOI PMC
White M.J.D. Chain processes in chromosomal speciation. Syst. Zool. 1978;27:285–298. doi: 10.2307/2412880. DOI
King M. Species Evolution: The Role of Chromosome Change. Cambridge University Press; Cambridge, UK: 1995.
Potter S., Bragg J.G., Blom M.P.K., Deakin J.E., Kirkpatrick M., Eldridge M.D.B., Moritz C. Chromosomal speciation in the genomics era: Disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 2017;8:1–18. doi: 10.3389/fgene.2017.00010. PubMed DOI PMC
Biémont C., Vieira C. Genetics: Junk DNA as an evolutionary force. Nature. 2006;443:521–524. doi: 10.1038/443521a. PubMed DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Rebordinos L., Cross I., Merlo A. High evolutionary dynamism in 5S rDNA of fish: State of the art. Cytogenet Genome Res. 2013;141:103–113. doi: 10.1159/000354871. PubMed DOI
Pereira C.S.A., Aboim M.A., Ráb P., Collares-Pereira M.J. Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae) Heredity. 2014;112:343–350. doi: 10.1038/hdy.2013.110. PubMed DOI PMC
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251–272. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Maneechot N., Yano C.F., Bertollo L.A.C., Getlekha N., Molina W.F., Ditcharoen S., Tengjaroenkul B., Supiwong W., Tanomtong A., De Bello Cioffi M. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) Mol. Cytogenet. 2016 doi: 10.1186/s13039-016-0215-2. PubMed DOI PMC
Symonová R., Howell W. Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Boron A., Porycka K., Ito D., Abe S., Kirtiklis L. Comparative molecular cytogenetic analysis of three Leuciscus species (Pisces, Cyprinidae) using chromosome banding and FISH with rDNA. Genetica. 2009;135:199. doi: 10.1007/s10709-008-9269-3. PubMed DOI
Cioffi M.B., Martins C., Bertollo L.A. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 2010;10:271–279. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC
Raskina O., Belyayev A., Nevo E. Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom. Res. 2004;12:153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI
Raskina O., Barber J.C., Nevo E., Belyayev A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI
Eickbush T.H., Eickbush D.G. Finely orchestrated movements: Evolution of the ribosomal RNA genes. Genetics. 2007;175:477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC
Glugoski L., Giuliano-Caetano L., Moreira-Filho O., Vicari M.R., Nogaroto V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene. 2018;650:49–54. doi: 10.1016/j.gene.2018.01.099. PubMed DOI
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Ocalewicz K. Telomeres in fishes. Cytogenet. Genome Res. 2013;141:114–125. doi: 10.1159/000354278. PubMed DOI
Charlesworth B., Snlegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371 doi: 10.1038/371215a0. PubMed DOI
López-Flores I., Garrido-Ramos M.A. The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos M.A., editor. Repetitive DNA. Volume 7. Karger Publishers; Basel, Switzerland: 2012. pp. 1–28. PubMed
Vicari M.R., Artoni R.F., Bertollo L.A.C. Comparative cytogenetics of Hoplias malabaricus (Pisces, Erythrinidae). A population analysis in adjacent hydrographic basins. Genet. Mol. Biol. 2005;28:103–110. doi: 10.1590/S1415-47572005000100018. DOI
Da Rosa R., Laforga Vanzela A.L., Rubert M., Martins-Santos I.C., Giuliano-Caetano L. Differentiation of Y chromosome in the X1 × 1X 2 × 2/X1 × 2Y sex chromosome system of Hoplias malabaricus (Characiformes, Erythrinidae) Cytogenet. Genome Res. 2010;127:54–60. doi: 10.1159/000269736. PubMed DOI
Cioffi M.B., Martins C., Bertollo L.A.C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet. 2009;10:34. PubMed PMC
De Oliveira E.A., Sember A., Bertollo L.A.C., Yano C.F., Ezaz T., Moreira-Filho O., Hatanaka T., Trifonov V., Liehr T., Al-Rikabi A.B.H., et al. Tracking the evolutionary pathway of sex chromosomes among fishes: Characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI
Eyo J.E. Cytogenetic variations in Clarias species (Clariidae: Siluriformes) of the Anambra river using leucocytes culture tecniques. Anim. Res. Int. 2005;2:275–286.
Arai R. Fish Karyotype A Check List. Springer Japan; Tokio, Japan: 2011.
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Boca Raton, FL, USA: 2015. pp. 21–26.
Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence in Situ Hybridization (FISH)—Application Guide. Springer; Berlin, Germany: 2017. pp. 429–444.
Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell. Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI
Cioffi M.B., Martins C., Centofante L., Jacobina U., Bertollo L.A.C. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: Mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI
Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI