Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
302928/2021-9
National Council for Scientific and Technological Development
PubMed
37106978
PubMed Central
PMC10135121
DOI
10.3390/ani13081415
PII: ani13081415
Knihovny.cz E-zdroje
- Klíčová slova
- Ag-NOR, comparative genomic hybridization, repetitive DNAs, ribosomal DNA,
- Publikační typ
- časopisecké články MeSH
The representatives of cyprinid lineage 'Poropuntiinae' with 16 recognized genera and around 100 species form a significant part of Southeast Asian ichthyofauna. Cytogenetics are valuable when studying fish evolution, especially the dynamics of repetitive DNAs, such as ribosomal DNAs (5S and 18S) and microsatellites, that can vary between species. Here, karyotypes of seven 'poropuntiin' species, namely Cosmochilus harmandi, Cyclocheilichthys apogon, Hypsibarbus malcomi, H. wetmorei, Mystacoleucus chilopterus, M. ectypus, and Puntioplties proctozysron occurring in Thailand were examined using conventional and molecular cytogenetic protocols. Variable numbers of uni- and bi-armed chromosomes indicated widespread chromosome rearrangements with a stable diploid chromosome number (2n) of 50. Examination with fluorescence in situ hybridization using major and minor ribosomal probes showed that Cosmochilus harmandi, Cyclocheilichthys apogon, and Puntioplites proctozystron all had one chromosomal pair with 5S rDNA sites. However, more than two sites were found in Hypsibarbus malcolmi, H. wetmorei, Mystacoleucus chilopterus, and M. ectypus. The number of chromosomes with 18S rDNA sites varied amongst their karyotypes from one to three; additionally, comparative genomic hybridization and microsatellite patterns varied among species. Our results reinforce the trend of chromosomal evolution in cyprinifom fishes, with major chromosomal rearrangements, while conserving their 2n.
Department of Biology Faculty of Science Khon Kaen University Muang Khon Kaen 40002 Thailand
Institute of Human Genetics University Hospital Jena 07747 Jena Germany
Program in Biology Faculty of Science Buriram Rajabhat University Muang Buriram 31000 Thailand
Zobrazit více v PubMed
Tan M., Armbruster J.W. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi) Zootaxa. 2018;4476:6–39. doi: 10.11646/zootaxa.4476.1.4. PubMed DOI
Yang L., Sado T., Hirt M.V., Pasco-Viel E., Arunachalam M., Li J., Wang X., Freyhof J., Saitoh K., Simons A.M., et al. Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes) Mol. Phylogenetics Evol. 2015;85:97–116. doi: 10.1016/j.ympev.2015.01.014. PubMed DOI
Yang L., Naylor G.J., Mayden R.L. Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes) Mol. Phylogenetics Evol. 2021;166:107323. doi: 10.1016/j.ympev.2021.107323. PubMed DOI
Wolf U., Ritter H., Atkin N.B., Ohno S. Polyploidization in the fish family Cyprinidae, order Cypriniformes. Hum. Genet. 1969;7:240–244. doi: 10.1007/BF00273173. PubMed DOI
Sola L., Gornung E. Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): An overview. Genetica. 2001;111:397–412. doi: 10.1023/A:1013776323077. PubMed DOI
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Šlechtová V., Bohlen J., Freyhof J., Ráb P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol. Phylogenetics Evol. 2006;39:529–541. doi: 10.1016/j.ympev.2005.09.018. PubMed DOI
Ráb P., Hnátková E., Majtánová Z., Šlechtová V.B., Bohlen J. Karyotype Record for the Morphologically Derived, Rarely Collected, Freshwater Fish Ellopostoma mystax (Cypriniformes, Cobitoidea, Ellopostomatidae) Ichthyol. Herpetol. 2021;109:998–1001. doi: 10.1643/i2020032. DOI
Bohlen J., Völker M., Rábová M., Ráb P. Note on the banded karyotype of the enigmatic South Asian loach Vaillantella maassi (Cypriniformes) Ichthyol. Res. 2007;55:82–84. doi: 10.1007/s10228-007-0007-0. DOI
Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos M.A., editor. Repetitive DNA Genome Dyn. Basel. 1st ed. Volume 7. Karger Publishers; Basel, Switzerland: 2012. pp. 197–221. PubMed
Goes C.A.G., dos Santos R.Z., Aguiar W.R.C., Alves D.C.V., Silva D.M.Z.D.A., Foresti F., Oliveira C., Utsunomia R., Porto-Foresti F. Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics. Front. Genet. 2022;13:884072. doi: 10.3389/fgene.2022.884072. PubMed DOI PMC
Miura I., Shams F., Lin S.M., Cioffi M.B., Liehr T., Al-Rikabi A., Kuwana C., Srikulnath K., Higaki Y., Ezaz T. Evolution of a multiple sex-chromosome system by three-sequential translocations among potential sex-chromosomes in the Taiwanese frog Odorrana swinhoana. Cells. 2021;10:661. doi: 10.3390/cells10030661. PubMed DOI PMC
Waters P.D., Patel H.R., Ruiz-Herrera A., Álvarez-González L., Lister N.C., Simakov O., Ezaz T., Kaur P., Frere C., Grützner F., et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA. 2021;118:e2112494118. doi: 10.1073/pnas.2112494118. PubMed DOI PMC
Kretschmer R., de Souza M.S., Furo I.d.O., Romanov M.N., Gunski R.J., Garnero A.d.V., de Freitas T.R.O., de Oliveira E.H.C., O’connor R.E., Griffin D.K. Interspecies Chromosome Mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): Cytogenomic Insight into Microchromosome Organization and Karyotype Evolution in Birds. Cells. 2021;10:826. doi: 10.3390/cells10040826. PubMed DOI PMC
Ferreira P.H.N., Souza F.H.S., de Moraes R.L., Perez M.F., Sassi F.D.M.C., Viana P.F., Feldberg E., Ezaz T., Liehr T., Bertollo L.A.C., et al. The Genetic Differentiation of Pyrrhulina (Teleostei, Characiformes) Species is Likely Influenced by Both Geographical Distribution and Chromosomal Rearrangements. Front. Genet. 2022;13:869073. doi: 10.3389/fgene.2022.869073. PubMed DOI PMC
Phimphan S., Chaiyasan P., Suwannapoom C., Reungsing M., Juntaree S., Tanomtong A., Supiwong W. Comparative karyotype study of three Cyprinids (Cyprinidae, Cyprininae) in Thailand by classical cytogenetic and FISH techniques. Comp. Cytogenet. 2020;14:597–612. doi: 10.3897/CompCytogen.v14i4.54428. PubMed DOI PMC
Pereira C., Ráb P., Collares-Pereira M. Chromosomes of Iberian Leuciscinae (Cyprinidae) Revisited: Evidence of Genome Restructuring in Homoploid Hybrids Using Dual-Color FISH and CGH. Cytogenet. Genome Res. 2013;141:143–152. doi: 10.1159/000354582. PubMed DOI
Symonová R., Majtánová Z., Sember A., Staaks G.B., Bohlen J., Freyhof J., Rábová M., Ráb P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42–52. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., de Almeida L., editors. Fish Cytogenetic Techniques. 1st ed. CRC Press; London, UK: 2015. pp. 118–131.
Doležálková M., Sember A., Marec F., Ráb P., Plötner J., Choleva L. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet. 2016;17:100. doi: 10.1186/s12863-016-0408-z. PubMed DOI PMC
Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva: Molecular Cytogenetics of Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI
Majtánová Z., Unmack P.J., Prasongmaneerut T., Shams F., Srikulnath K., Ráb P., Ezaz T. Evidence of Interspecific Chromosomal Diversification in Rainbowfishes (Melanotaeniidae, Teleostei) Genes. 2020;11:818. doi: 10.3390/genes11070818. PubMed DOI PMC
Shams F., Dyer F., Thompson R., Duncan R.P., Thiem J.D., Majtánová Z., Ezaz T. Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae) Int. J. Mol. Sci. 2019;20:4244. doi: 10.3390/ijms20174244. PubMed DOI PMC
LeVan A., Fredga K., Sandberg A.A. Nomenclature for Centromeric Position on Chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Donsakul T., Magtoon W., Rangsiruji A. Karyological studies of four Cyprinid fishes: Barbichthys nitidus, Mystacoleucus argenteus, Cychocheilichthys lagleri and Systomus sp. 1 from Thailand; Proceedings of the 44rd Kasetsart University Annual Conference: Fisheries; Bangkok, Thailand. 30 January–2 February 2006; Bangkok, Thailand: Kasetsart University; pp. 469–476.
Chantapan T. Master’s Thesis. Khon Kaen University; Khon Kaen, Thailand: 2015. Standardized karyotype and ideogram of cyprinid fishes (Subfamily: Cyprininae) in Thailand.
Seetapan K. Karyotypes of sex fish species of the family Cyprinidae; Proceedings of the 45th Kasetsart University Annual Conference: Fisheries; Bangkok, Thailand,. 30 January–2 February 2007; Bangkok, Thailand: Kasetsart University; pp. 749–758.
Magtoon W., Arai R. Karyotypes of five Puntius species and one Cyclocheilichtltys species (Pisces, Cyprinidae) from Thailand. Bull. Nat. Sci. Mus. Tokio. 1989;15:167–175.
Suzuki A., Taki Y., Mochizuki M., Hirata J. Chromosomal speciation in Eurasian and Japanese Cyprinidae (Pisces, Cypriniformes) Cytobios. 1995;83:171–186.
Wu G.M., Zhu X.P., Hu G., Luo J.R. The karyotype of Puntius gonionotus (Cyprinidae) Chin. J. Zool. 1991;26:20–21.
Donsakul T., Poopitayasathaporn A. Research Project. Srinakharinwirot University; Bangkok, Thailand: 2002. Karyotype of Fifteen Species of Cyprinid Fishes (Family Cyprinidae) from Thailand.
Khunda-Bukhsh A.R., Das J.K. Cytogenetic analyses in eight species of teleostean fishes (Pisces): Karyotype, multiple Ag-NORs, sex chromosomes. Res. Rev. BioScience. 2007;1:47–52.
Arai R. Fish Karyotypes: A Check List. Springer Science & Bussiness Media; Berlin/Heidelberg, Germany: 2011.
Donsakul T., Magtoon W., Rangsiruji A. Karyotypes of four cyprinid fishes: Cyclocheilichthys repasson, Cosmochilus harmandi, Poropuntius deauratus and Sikukia gudgeri from Thailand; Proceedings of the 43rd Kasetsart University Annual Conference: Fisheries, Kasetsart University; Bangkok, Thailand. 1–4 February 2005; pp. 344–351.
Chaiyasan P., Supiwong W., Saenjundaeng P., Seetapan K., Pinmongkhonkul S., Tanomtong A. A Report on Classical Cytogenetics of Hihgfin Barb Fish, Cyclocheilichthys armatus (Cypriniformes, Cyprinidae) Cytologia. 2018;83:149–154. doi: 10.1508/cytologia.83.149. DOI
Donsakul T., Rangsiruji A., Magtoon W. Karyotypes of four cyprinid fishes: Poropuntius normani, Hypsibarbus malcolmi, Scaphognathops bandanensis and Henicorhynchus caudiguttatus from Thailand; Proceedings of the 45th Kasetsart University Annual Conference: Fisheries, Kasetsart University; Bangkok, Thailand. 30 January–2 February 2007; pp. 740–748.
Magtoon W., Arai R. Karyotypes and distribution of nucleolus organizer regions in cyprinid fishes from Thailand. Jpn. J. Ichthyol. 1993;40:77–85. doi: 10.11369/jji1950.40.77. DOI
Donsakul T., Magtoon W. Karyotypes of four cyprinid fishes, Osteochilus melanopleura, Puntioplites proctozysron, Paralaubuca riveroi and Rasbora sumatrana, from Thailand; Proceedings of the 33rd Kasetsart University Annual Conference: Fisheries, Kasetsart University; Bangkok, Thailand. 30 January–1 February 1995; pp. 128–138.
Donsakul T., Magtoon W. Karyotypes of two cyprinid fishes, Hypsibarbus wetmorei and Morulius chrysophekadion, from Thailand; Proceedings of the 28th Congress on Science and Technology of Thailand, Queen Sirikit National Convention Centre; Bangkok, Thailand. 24–26 October 2002; p. 92.
Piyapong C. Master’s Thesis. Chulalongkorn University; Bangkok, Thailand: 1999. Karyotypes and Distribution of Nucleolus Organizer Regions in Four Cyprinid Species from Thailand.
Arai R., Magtoon W. Karyotypes of four cyprinid fishes from Thailand. Bull. Natl. Mus. Nat. Sci. 1991;17:183–188.
Zan R.G., Song Z., Liu W.G. Studies on karyotypes and nuclear DNA contents of some cyprinoid fishes, with notes on fish polyploids in China; Proceedings of the 2nd International Conference Indo-Pacific Fishes; Tokyo, Japan. 1 October 1986; pp. 877–885.
Donsakul T., Magtoon W. Karyotypes of seven cyprinid fishes: Systomos binotatus, Puntius brevis, Poropuntius laoensis, Labiobarbus siamensis, Catlocarpiosiamensis, Tor tambroides and Probarbus jullieni from Thailand. Srinakharinwirot Sci. J. 2008;24:80–92.
Zan R.G., Song Z., Liu W.G. Studies of karyotypes of seven species of fish in Barbinae, with a discussion on identification of fish polyploids. Zool. Res. 1984;5:82–90.
Supiwong W., Tanomtong A., Supanuam P., Jantarat S., Khakhong S., Sanoamuang L. A discovery of nucleolar organizer regions (NORs) polymorphism and karyological analysis of Smith’ s Barb, Puntioplites proctozysron (Cypriniformes, Cyprinidae) in Thailand. Cytologia. 2012;77:35–42. doi: 10.1508/cytologia.77.35. DOI
Rainboth W.J., Vidthayanon C., Yen M.D. Fishes of the Greater Mekong Ecosystem with Species List and Photographic Atlas, Miscellaneous Publications Museum of Zoology. University of Michigan; Ann Harbor, MI, USA: 2012. p. 314.
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Toledo L.F.A., editors. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. 1st ed. RC Press; Boca Raton, FL, USA: 2015. pp. 21–26.
Howell W.M., Black D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI
Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH) Springer; Berlin/Heidelberg, Germany: 2017. pp. 429–443. DOI
Martins C., Ferreira I.A., Oliveira C., Foresti F., Galetti P.M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006;127:133–141. doi: 10.1007/s10709-005-2674-y. PubMed DOI
Cioffi M., Martins C., Centofante L., Jacobina U., Bertollo L. Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI
Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Zwick M.S., Hanson R.E., Islam-Faridi M.N., Stelly D.M., Wing R.A., Price H.J., McKnight T.D. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Saenjundaeng P., Supiwong W., Sassi F.M.C., Bertollo L.A.C., Rab P., Kretschmer R., Tanomtong A., Suwannapoom C., Reungsing M., Cioffi M.D.B. Chromosomes of Asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus Osteochilus (Cyprinidae, Labeoninae, “Osteochilini”) Genet. Mol. Biol. 2020;43:e20200195. doi: 10.1590/1678-4685-gmb-2020-0195. PubMed DOI PMC
Pereira R., Pereira V., Gomes I., Tomas C., Morling N., Amorim A., Prata M.J., Carracedo Á., Gusmão L. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Int. J. Leg. Med. 2011;126:97–105. doi: 10.1007/s00414-011-0593-2. PubMed DOI
Derenzini M. The AgNORs. Micron. 2000;31:117–120. doi: 10.1016/S0968-4328(99)00067-0. PubMed DOI
Gornung E. Twenty Years of Physical Mapping of Major Ribosomal RNA Genes across the Teleosts: A Review of Research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Rebordinos L., Cross I., Merlo A. High Evolutionary Dynamism in 5S rDNA of Fish: State of the Art. Cytogenet. Genome Res. 2013;141:103–113. doi: 10.1159/000354871. PubMed DOI
Cioffi M., Bertollo L.A.C., Villa M.A., de Oliveira E.A., Tanomtong A., Yano C.F., Supiwong W., Chaveerach A. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes) PLoS ONE. 2015;10:e0130199. doi: 10.1371/journal.pone.0130199. PubMed DOI PMC
Symonová R., Howell W.M. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Salim D., Gerton J.L. Ribosomal DNA instability and genome adaptability. Chromosom. Res. 2019;27:73–87. doi: 10.1007/s10577-018-9599-7. PubMed DOI
Roa F., Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet. Genome Res. 2015;146:243–249. doi: 10.1159/000440930. PubMed DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2017;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Fujiwara A., Abe S., Yamaha E., Yamazaki F., Yoshida M.C. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma. 1997;106:44–52. doi: 10.1007/s004120050223. PubMed DOI
Zhu H.-P., Gui J.-F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265:109–117. doi: 10.1016/j.aquaculture.2006.10.026. DOI
Valente G.T., Schneider C.H., Gross M.C., Feldberg E., Martins C. Comparative cytogenetics of cichlid fishes through genomic in-situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosom. Res. 2009;17:791–799. doi: 10.1007/s10577-009-9067-5. PubMed DOI
Ditcharoen S., Bertollo L.A.C., Ráb P., Hnátková E., Molina W.F., Liehr T., Tanomong A., Triantaphyllidis C., Ozouf-Costaz C., Tongnunui S., et al. Genomic organization of repetitive DNA elements and extensive karyotype diversity of silurid catfishes (Teleostei: Siluriformes): A comparative cytogenetic approach. Int. J. Mol. Sci. 2019;20:3545. doi: 10.3390/ijms20143545. PubMed DOI PMC
Rampin M., Bi K., Bogart J.P., Collares-Pereira M.J. Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using genomic in situ hybridization (GISH) Comp. Cytogenet. 2012;6:287–300. doi: 10.3897/compcytogen.v6i3.3543. PubMed DOI PMC
Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. Chromosome studies of European cyprinid fishes: Cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet. Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI
Ráb P., Collares-Pereira M.J. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes). A review. Folia Zool. 1995;44:193–214.
Boroń A., Spoz A., Porycka K., Karolewska M., Ito D., Abe S., Kirtiklis L., Juchno D. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp. Cytogenet. 2014;8:233–248. doi: 10.3897/compcytogen.v8i3.7718. PubMed DOI PMC
Knytl M., Kalous L., Rylková K., Choleva L., Merilä J., Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE. 2018;13:e0190924. doi: 10.1371/journal.pone.0190924. PubMed DOI PMC
Saenjundaeng P., Cioffi M.B., de Oliveira E.A., Tanomtong A., Supiwong W., Phimphan S., Collares-Pereira M.J., Sember A., Bertollo L.A.C., Liehr T., et al. Chromosomes of Asian cyprinid fishes: Cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Mol. Cytogenet. 2018;11:1–9. doi: 10.1186/s13039-018-0399-8. PubMed DOI PMC
Nirchio M., Rossi A.R., Foresti F., Oliveira C. Chromosome evolution in fishes: A new challenging proposal from Neotropical species. Neotrop. Ichtchyol. 2014;12:761–770. doi: 10.1590/1982-0224-20130008. DOI
Jacobina U.P., Martinez P.A., Cioffi M.B., Garcia J., Bertollo L.A.C., Molina W.F. Morphological and karyotypic differentiation in Caranx lugubris (Perciformes: Carangidae) in the St. Peter and St. Paul Archipelago, mid-Atlantic Ridge. Helgol. Mar. Res. 2014;68:17–25. doi: 10.1007/s10152-013-0365-0. DOI
Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Ortí G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC