Evidence of Interspecific Chromosomal Diversification in Rainbowfishes (Melanotaeniidae, Teleostei)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32708365
PubMed Central
PMC7397213
DOI
10.3390/genes11070818
PII: genes11070818
Knihovny.cz E-zdroje
- Klíčová slova
- Cairnsichthys, FISH, Glossolepis, Iriatherina, Melanotaenia, Rhadinocentrus, chromosome, karyotype, rDNA, variability,
- MeSH
- fylogeneze MeSH
- karyotyp * MeSH
- polymorfismus genetický * MeSH
- ribozomální DNA genetika MeSH
- ryby klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
Rainbowfishes (Melanotaeniidae) are the largest monophyletic group of freshwater fishes occurring in Australia and New Guinea, with 112 species currently recognised. Despite their high taxonomic diversity, rainbowfishes remain poorly studied from a cytogenetic perspective. Using conventional (Giemsa staining, C banding, chromomycin A3 staining) and molecular (fluorescence in situ hybridisation with ribosomal DNA (rDNA) and telomeric probes) cytogenetic protocols, karyotypes and associated chromosomal characteristics of five species were examined. We covered all major lineages of this group, namely, Running River rainbowfish Melanotaenia sp., red rainbowfish Glossolepisincisus, threadfin rainbowfish Iriatherina werneri, ornate rainbowfish Rhadinocentrus ornatus, and Cairns rainbowfish Cairnsichthys rhombosomoides. All species had conserved diploid chromosome numbers 2n = 48, but karyotypes differed among species; while Melanotaenia sp., G. incisus, and I. werneri possessed karyotypes composed of exclusively subtelo/acrocentric chromosomes, the karyotype of R. ornatus displayed six pairs of submetacentric and 18 pairs of subtelo/acrocentric chromosomes, while C. rhombosomoides possessed a karyotype composed of four pairs of submetacentric and 20 pairs of subtelo/acrocentric chromosomes. No heteromorphic sex chromosomes were detected using conventional cytogenetic techniques. Our data indicate a conserved 2n in Melanotaeniidae, but morphologically variable karyotypes, rDNA sites, and heterochromatin distributions. Differences were observed especially in taxonomically divergent species, suggesting interspecies chromosome rearrangements.
Zobrazit více v PubMed
Biemont C., Vieira C. Genetics—Junk DNA as an evolutionary force. Nature. 2006;443:521–524. doi: 10.1038/443521a. PubMed DOI
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the Teleosts: A review of research. Cytogenet. Genome Res. 2013 doi: 10.1159/000354832. PubMed DOI
Cioffi M.B., Camacho J.P.M., Bertollo L.A.C. Repetitive DNAs and differentiation of sex chromosomes in neotropical fishes. Cytogenet. Genome Res. 2011;132:188–194. doi: 10.1159/000321571. PubMed DOI
Martins C. Chromosomes and Repetitive DNAs: A Contribution to the Knowledge of the Fish Genome. Fish Cytogenet. 2007;421:452.
Allen G.R., Midgley S.H., Allen M. Field Guide to the Freshwater Fishes of Australia. Western Australian Museum; Perth, Australia: 2002.
Fricke R., Eschmeyer W.N., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, Rederences. [(accessed on 26 May 2020)]; Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
Unmack P.J., Allen G.R., Johnson J.B. Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol. Phylogenet. Evol. 2013;67:15–27. doi: 10.1016/j.ympev.2012.12.019. PubMed DOI
Zhu D., Jamieson B.G., Hugall A., Moritz C. Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaeniidae) Mol. Biol. Evol. 1994;11:672–683. doi: 10.1093/oxfordjournals.molbev.a040146. PubMed DOI
McGuigan K., Zhu D., Allen G.R., Moritz C. Phylogenetic relationships and historical biogeography of melanotaeniid fishes in Australia and New Guinea. Mar. Freshw. Res. 2000;51:713–723. doi: 10.1071/MF99159. DOI
Campanella D., Hughes L.C., Unmack P.J., Bloom D.D., Piller K.R., Ortí G. Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Mol. Phylogenet. Evol. 2015;86:8–23. doi: 10.1016/j.ympev.2015.03.001. PubMed DOI
Tappin A.R. Rainbowfishes, Their Care and Keeping in Captivity. 2nd ed. [(accessed on 26 May 2020)]. Available online: http://rainbowfish.angfaqld.org.au.
Allen G.R. Rainbowfishes: In Nature and In the Aquarium. Tetra-Verlag; Velten, Germany: 1995.
Molina W.F., da Costa G.W.W.F., de Bello Cioffi M., Bertollo L.A.C. Chromosomal differentiation and speciation in sister-species of Grammatidae (Perciformes) from the Western Atlantic. Helgol. Mar. Res. 2012;66:363–370. doi: 10.1007/s10152-011-0276-x. DOI
Hinegardner R., Rosen D.E. Cellular DNA Content and the Evolution of Teleostean Fishes. Am. Nat. 1972;106:621–644. doi: 10.1086/282801. DOI
Scheel J.J. Rivuline Karyotypes and their evolution (Rivulinae, Cyprinodontidae, Pisces) J. Zool. Syst. Evol. Res. 1972;10:180–209. doi: 10.1111/j.1439-0469.1972.tb00797.x. DOI
Arai R. Chromosomes of two species of Atherinoid fishes. Bull. Natl. Sci. Mus. Ser. A (Zool) 1978;4:147–150.
Carey G., Mather P. Karyotypes of four Australian fish species Melanotaenia duboulayi; Bidyanus bidyanus, Macquaria novemaculeata and Lates calcarifer. Cytobios. 1999;100:137–146.
Said D.S. Kekerab atan beberapa spesies Ikan Pelangi Irian (Famili Melanotaeniidae) berdasarkan karyotipe [The closely related of some Rainbow Fishes (Melanotaeniidae) from Irian based of caryotipe] J. Iktiologi Indones. 2005;5:31–38. doi: 10.32491/jii.v5i1.299. DOI
Bertollo L.A.C., de Cioffi M.B., Moreira-Filho O. Direct Chromosome Preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Foresti de Almeida-Toledo L., editors. Fish Cytogenetic Techniques. CRC Press, Inc.; Enfield, NH, USA: 2015. pp. 21–26.
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed Gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Sola L., Rossi A.R., Iaselli V., Rasch E.M., Monaco P.J. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet. Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Komiya H., Takemura S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J. Biochem. 1979;86:1067–1080. doi: 10.1093/oxfordjournals.jbchem.a132601. PubMed DOI
Zhang Q., Cooper R.K., Tiersch T.R. Chromosomal location of the 28S ribosomal RNA gene of channel catfish by in situ polymerase chain reaction. J. Fish Biol. 2000;56:388–397. doi: 10.1111/j.1095-8649.2000.tb02113.x. DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., de Almeida L., editors. Fish Cytogenetic Techniques. CRC Press; Boca Raton, FL, USA: 2015. pp. 118–131.
McGuigan K., Franklin C.E., Moritz C., Blows M.W. Adaptation of rainbow fish to lake and stream habitats. Evolution. 2003;57:104–118. doi: 10.1111/j.0014-3820.2003.tb00219.x. PubMed DOI
Page T.J., Sharma S., Hughes J.M. Deep phylogenetic structure has conservation implications for ornate rainbowfish (Melanotaeniidae: Rhadinocentrus ornatus) in Queensland, eastern Australia. Mar. Freshw. Res. 2004;55:165–172. doi: 10.1071/MF03139. DOI
Colléter M., Brown C. Personality traits predict hierarchy rank in male rainbowfish social groups. Anim. Behav. 2011;81:1231–1237. doi: 10.1016/j.anbehav.2011.03.011. DOI
Dion-Côté A.-M., Symonová R., Lamaze F.C., Pelikánová Š., Ráb P., Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: The role of historical contingency and relevance for speciation. Mol. Ecol. 2016;26:178–192. doi: 10.1111/mec.13816. PubMed DOI
Unmack P.J. Update on the running river rainbowfish. Fishes Sahul. 2016:1025–1032.
Mank J.E., Avise J.C. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI
Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011. 2011 edition.
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Moy K.G., Unmack P.J., Lintermans M., Duncan R.P., Brown C. Barriers to hybridisation and their conservation implications for a highly threatened Australian fish species. Ethology. 2019;125:142–152. doi: 10.1111/eth.12837. DOI
Unmack P.J. Historical Biogeography and a Priori Hypotheses Based on Freshwater Fishes. Arizona State University; Tempe, AZ, USA: 2005.
Mayr B., Rab P., Kalat M. Localization of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI
Amemiya C.T., Gold J.R. Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia. 1986;1986:226–231. doi: 10.2307/1444915. DOI
Schmid M., Guttenbach M. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma. 1988;97:101–114. doi: 10.1007/BF00327367. PubMed DOI
Gromicho M., Ozouf-Costaz C., Collares-Pereira M.J. Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet. Genome Res. 2005;109:507–511. doi: 10.1159/000084211. PubMed DOI
Sola L., Gornung E., Naoi H., Gunji R., Sato C., Kawamura K., Arai R., Ueda T. FISH-mapping of 18S ribosomal RNA genes and telomeric sequences in the Japanese bitterlings Rhodeus ocellatus kurumeus and Tanakia limbata (Pisces, Cyprinidae) reveals significant cytogenetic differences in morphologically similar karyotypes. Genetica. 2003;119:99–106. doi: 10.1023/A:1024446910161. PubMed DOI
Meyne J., Ratliff R.L., Moyzis R.K. Conservative of the human telomere sequences (TTAGGG)n among vertebartes. Proc. Natl. Acad. Sci. USA. 1989;86:7049–7053. doi: 10.1073/pnas.86.18.7049. PubMed DOI PMC
Ocalewicz K. Telomeres in Fishes. Cytogen. Genome Res. 2013;141:114–125. doi: 10.1159/000354278. PubMed DOI
Nanda I., Schneider-Rasp S., Winking H., Schmid M. Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosom. Res. 1995;3:399–409. doi: 10.1007/BF00713889. PubMed DOI
Mayr E., White M.J.D. Modes of Speciation. Syst. Biol. 1978;27:478–482. doi: 10.1093/sysbio/27.4.478. DOI
King M. Species Evolution: The Role of Chromosome Change. Cambridge University Press; Cambridge, UK: 1995.