Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31480228
PubMed Central
PMC6747191
DOI
10.3390/ijms20174244
PII: ijms20174244
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, comparative genomic hybridisation (CGH), florescence in situ hybridisation (FISH), karyogram, sex determination,
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- karyotyp * MeSH
- metafáze MeSH
- metylace DNA genetika MeSH
- mikrosatelitní repetice genetika MeSH
- okounovití genetika MeSH
- Perciformes genetika MeSH
- pohlavní chromozomy genetika MeSH
- pruhování chromozomů MeSH
- sladká voda * MeSH
- telomery genetika MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes' range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution.
Zobrazit více v PubMed
Sharma A., Sen S. Chromosome Botany. Science Publishers; Enfield, CT, USA: 2002.
Getlekha N., Cioffi M.d.B., Maneechot N., Bertollo L.A.C., Supiwong W., Tanomtong A., Molina W.F. Contrasting evolutionary paths among Indo-Pacific Pomacentrus species promoted by extensive pericentric inversions and genome organization of repetitive sequences. Zebrafish. 2018;15:45–54. doi: 10.1089/zeb.2017.1484. PubMed DOI
Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC
Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish Pantodon buchholzi, the Sole Species of the Family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI
Baroiller J.-F., D’Cotta H., Saillant E. Environmental effects on fish sex determination and differentiation. Sex. Dev. 2009;3:118–135. doi: 10.1159/000223077. PubMed DOI
Hayes T.B. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. J. Exp. Zool. 1998;281:373–399. doi: 10.1002/(SICI)1097-010X(19980801)281:5<373::AID-JEZ4>3.0.CO;2-L. PubMed DOI
Kobayashi Y., Nagahama Y., Nakamura M. Diversity and Plasticity of Sex Determination and Differentiation in Fishes. Sex. Dev. 2013;7:115–125. doi: 10.1159/000342009. PubMed DOI
Baillie J., Hilton-Taylor C., Stuart S.N. 2004 IUCN Red List of Threatened Species: A Global Species Assessment. IUCN; Gland, Switzerland: 2004.
Nelson J.S., Grande T.C., Wilson M.V. Fishes of the World. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Vörösmarty C.J., Lévêque C., Revenga C., Bos R., Caudill C., Chilton J., Douglas E., Meybeck M., Prager D., Balvanera P. Fresh water. Ecosyst. Hum. Well-Being Curr. State Trends. 2005;1:167–201.
Bray D.J. Temperate Basses, Percichthyidae in Fishes of Australia. [(accessed on 25 June 2018)]; Available online: https://australianmuseum.net.au/learn/animals/fishes/percichthyidae-australian-freshwater-basses-perches-and-cods/
Allen G.R., Midgley S.H., Allen M. Field Guide to the Freshwater Fishes of Australia. Western Australian Museum; Welshpool, WA, Australia: 2002.
Lintermans M. Fishes of the Murray-Darling Basin: An Introductory Guide. Murray-Darling Basin Commisssion; Canbera, ACT, Australia: 2007.
Beheregaray L.B., Pfeiffer L.V., Attard C.R.M., Sandoval-Castillo J., Domingos F.M.C.B., Faulks L.K., Gilligan D.M., Unmack P.J. Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the golden perch (Macquaria ambigua) Mol. Phylogenet. Evolut. 2017;111:65–75. doi: 10.1016/j.ympev.2017.03.021. PubMed DOI
Goodrich H. Mendelian inheritance in fish. Q. Rev. Biol. 1929;4:83–99. doi: 10.1086/394324. DOI
Gordon M. Genetics of Platypoecilus III. Inheritance of Sex and Crossing over of the Sex Chromosomes in the Platyfish. Genetics. 1937;22:376–392. PubMed PMC
Huxley J.S. Note on an alternating preponderance of males and females in fish, and its possible significance. J. Genet. 1920;10:265–276. doi: 10.1007/BF02984298. DOI
Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI
Moreira-Filho O., Bertollo L.A., Galetti Jr P.M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae) Caryologia. 1993;46:115–125. doi: 10.1080/00087114.1993.10797253. DOI
Steinemann M., Steinemann S., Lottspeich F. How Y chromosomes become genetically inert. Proc. Natl. Acad. Sci. USA. 1993;90:5737–5741. doi: 10.1073/pnas.90.12.5737. PubMed DOI PMC
White M.J.D. Animal Cytology and Evolution. CUP Archive; Cambridge, UK: 1977.
Ezaz T., Berra T.M., Graves J.A.M. Karyotype of the Australian nurseryfish, Kurtus gulliveri (Kurtidae: Perciformes) Chromosome Sci. 2006;9:85–88.
Majtánová Z., Moy K.G., Unmack P.J., Ráb P., Ezaz T. Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead Craterocephalus amniculus (Atheriniformes, Teleostei) Peer J. Prepr. 2019;7:e27688v27681. doi: 10.7717/peerj.7347. PubMed DOI PMC
Arai R. Fish. Karyotypes: A Check List. Springer Science & Business Media; Berlin, Germany: 2011.
Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Orti G. Phylogenetic classification of bony fishes. BMC Evolut. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Ráb P., Rábová M., Pereira C.S., Collares-Pereira M.J., Pelikánová Š. Chromosome studies of European cyprinid fishes: Interspecific homology of leuciscine cytotaxonomic marker—The largest subtelocentric chromosome pair as revealed by cross-species painting. Chromosome Res. 2008;16:863. doi: 10.1007/s10577-008-1245-3. PubMed DOI
Viana P.F., Ezaz T., de Bello Cioffi M., Jackson Almeida B., Feldberg E. Evolutionary Insights of the ZW Sex Chromosomes in Snakes: A New Chapter Added by the Amazonian Puffing Snakes of the Genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Near T.J., Sandel M., Kuhn K.L., Unmack P.J., Wainwright P.C., Smith W.L. Nuclear gene-inferred phylogenies resolve the relationships of the enigmatic Pygmy Sunfishes, Elassoma (Teleostei: Percomorpha) Mol. Phylogenet. Evolut. 2012;63:388–395. doi: 10.1016/j.ympev.2012.01.011. PubMed DOI
Molina W.F. Chromosomal changes and stasis in marine fish groups. Fish. Cytogenet. 2007;31:69–110.
Abramyan J., Ezaz T., Graves J.A.M., Koopman P. Z and W sex chromosomes in the cane toad (Bufo marinus) Chromosome Res. 2009;17:1015. doi: 10.1007/s10577-009-9095-1. PubMed DOI
Almeida-Toledo L., Foresti F., Daniel M., Toledo-Filho S. Sex chromosome evolution in fish: The formation of the neo-Y chromosome in Eigenmannia (Gymnotiformes) Chromosoma. 2000;109:197–200. doi: 10.1007/s004120050428. PubMed DOI
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J.A.M. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13 doi: 10.1007/s10577-005-1010-9. PubMed DOI
Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC
Traut W., Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, platyfish and guppy. Chromosome Res. 2001;9:659–672. doi: 10.1023/A:1012956324417. PubMed DOI
Charlesworth B. The evolution of sex chromosomes. Science. 1991;251:1030–1033. doi: 10.1126/science.1998119. PubMed DOI
Graves J.A.M. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu. Rev. Genet. 2008;42:565–586. doi: 10.1146/annurev.genet.42.110807.091714. PubMed DOI
Muller H.J. A gene for the fourth chromosome of Drosophila. J. Exp. Zool. 1914;17:325–336. doi: 10.1002/jez.1400170303. DOI
Ohno S. Sex chromosome and sex-linked genes. Chromosoma. 1967;23:1–9. doi: 10.1007/BF00293307. DOI
De Freitas N.L., Al-Rikabi A.B., Bertollo L.A.C., Ezaz T., Yano C.F., de Oliveira E.A., Hatanaka T., de Bello Cioffi M. Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Cur. Genomics. 2018;19:216–226. doi: 10.2174/1389202918666170711160528. PubMed DOI PMC
Ezaz T., Deakin J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evolut. Biol. 2014;1:1–9. doi: 10.1155/2014/104683. DOI
Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC
Viana P.F., Ezaz T., Marajó L., Ferreira M., Zuanon J., Cioffi M.B., Bertollo L.A., Gross M.C., Feldberg E. Genomic Organization of Repetitive DNAs and Differentiation of an XX/XY Sex Chromosome System in the Amazonian Puffer Fish, Colomesus asellus (Tetraodontiformes) Cytogenet. Genome Res. 2017;153:41–49. doi: 10.1159/000484423. PubMed DOI
Yano C.F., Bertollo L.A.C., Liehr T., Troy W.P., Cioffi M.d.B. W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. J. Hered. 2016;107:342–348. doi: 10.1093/jhered/esw021. PubMed DOI PMC
Schartl M. Sex chromosome evolution in non-mammalian vertebrates. Cur. Opin. Genet. Dev. 2004;14:634–641. doi: 10.1016/j.gde.2004.09.005. PubMed DOI
Volff J.-N., Nanda I., Schmid M., Schartl M. Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sex. Dev. 2007;1:85–99. doi: 10.1159/000100030. PubMed DOI
Cioffi M., Kejnovsky E., Bertollo L. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI
Nanda I., Feichtinger W., Schmid M., Schröder J.H., Zischler H., Epplen J.T. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. Mol. Evolut. 1990;30:456–462. doi: 10.1007/BF02101117. DOI
Gamble T., Geneva A.J., Glor R.E., Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2014;68:1027–1041. doi: 10.1111/evo.12328. PubMed DOI PMC
Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12 doi: 10.1186/1471-2156-12-90. PubMed DOI PMC
Bertollo L., Cioffi M., Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Boca Raton, FL, USA: 2015. pp. 21–26.
Völker M., Ráb P. Direct chromosome preparation from regenerating fish fin tissue. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Ray-Fin Fishes and Chondrichthyans) CRC Press; Boca Raton, FL, USA: 2015. pp. 37–41.
Salvadori S., Coluccia E., Deiana A.M. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. C-Banding; pp. 88–91.
Ezaz M.T., McAndrew B., Penman D. Spontaneous diploidization of the maternal chromosome set in Nile tilapia (Oreochromis niloticus L.) eggs. Aquac. Res. 2004;35:271–277. doi: 10.1111/j.1365-2109.2004.01010.x. DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. pp. 118–131.
Bonillo C., Coutanceau J., D’Cotta H., Ghigliotti L., Ozouf-Costaz C., Pisano E. Standard fluorescence in situ hybridization procedures. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. pp. 103–118.
Domaschenz R., Livernois A.M., Rao S., Ezaz T., Deakin J.E. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Mol. Cytogenet. 2015;8:104. doi: 10.1186/s13039-015-0208-6. PubMed DOI PMC
Ingles E.D., Deakin J.E. Global DNA Methylation patterns on marsupial and devil facial tumour chromosomes. Mol. Cytogenet. 2015;8:74. doi: 10.1186/s13039-015-0176-x. PubMed DOI PMC