Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae)

. 2019 Aug 30 ; 20 (17) : . [epub] 20190830

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31480228

Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes' range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution.

Zobrazit více v PubMed

Sharma A., Sen S. Chromosome Botany. Science Publishers; Enfield, CT, USA: 2002.

Getlekha N., Cioffi M.d.B., Maneechot N., Bertollo L.A.C., Supiwong W., Tanomtong A., Molina W.F. Contrasting evolutionary paths among Indo-Pacific Pomacentrus species promoted by extensive pericentric inversions and genome organization of repetitive sequences. Zebrafish. 2018;15:45–54. doi: 10.1089/zeb.2017.1484. PubMed DOI

Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC

Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish Pantodon buchholzi, the Sole Species of the Family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI

Baroiller J.-F., D’Cotta H., Saillant E. Environmental effects on fish sex determination and differentiation. Sex. Dev. 2009;3:118–135. doi: 10.1159/000223077. PubMed DOI

Hayes T.B. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. J. Exp. Zool. 1998;281:373–399. doi: 10.1002/(SICI)1097-010X(19980801)281:5<373::AID-JEZ4>3.0.CO;2-L. PubMed DOI

Kobayashi Y., Nagahama Y., Nakamura M. Diversity and Plasticity of Sex Determination and Differentiation in Fishes. Sex. Dev. 2013;7:115–125. doi: 10.1159/000342009. PubMed DOI

Baillie J., Hilton-Taylor C., Stuart S.N. 2004 IUCN Red List of Threatened Species: A Global Species Assessment. IUCN; Gland, Switzerland: 2004.

Nelson J.S., Grande T.C., Wilson M.V. Fishes of the World. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Vörösmarty C.J., Lévêque C., Revenga C., Bos R., Caudill C., Chilton J., Douglas E., Meybeck M., Prager D., Balvanera P. Fresh water. Ecosyst. Hum. Well-Being Curr. State Trends. 2005;1:167–201.

Bray D.J. Temperate Basses, Percichthyidae in Fishes of Australia. [(accessed on 25 June 2018)]; Available online: https://australianmuseum.net.au/learn/animals/fishes/percichthyidae-australian-freshwater-basses-perches-and-cods/

Allen G.R., Midgley S.H., Allen M. Field Guide to the Freshwater Fishes of Australia. Western Australian Museum; Welshpool, WA, Australia: 2002.

Lintermans M. Fishes of the Murray-Darling Basin: An Introductory Guide. Murray-Darling Basin Commisssion; Canbera, ACT, Australia: 2007.

Beheregaray L.B., Pfeiffer L.V., Attard C.R.M., Sandoval-Castillo J., Domingos F.M.C.B., Faulks L.K., Gilligan D.M., Unmack P.J. Genome-wide data delimits multiple climate-determined species ranges in a widespread Australian fish, the golden perch (Macquaria ambigua) Mol. Phylogenet. Evolut. 2017;111:65–75. doi: 10.1016/j.ympev.2017.03.021. PubMed DOI

Goodrich H. Mendelian inheritance in fish. Q. Rev. Biol. 1929;4:83–99. doi: 10.1086/394324. DOI

Gordon M. Genetics of Platypoecilus III. Inheritance of Sex and Crossing over of the Sex Chromosomes in the Platyfish. Genetics. 1937;22:376–392. PubMed PMC

Huxley J.S. Note on an alternating preponderance of males and females in fish, and its possible significance. J. Genet. 1920;10:265–276. doi: 10.1007/BF02984298. DOI

Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI

Moreira-Filho O., Bertollo L.A., Galetti Jr P.M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae) Caryologia. 1993;46:115–125. doi: 10.1080/00087114.1993.10797253. DOI

Steinemann M., Steinemann S., Lottspeich F. How Y chromosomes become genetically inert. Proc. Natl. Acad. Sci. USA. 1993;90:5737–5741. doi: 10.1073/pnas.90.12.5737. PubMed DOI PMC

White M.J.D. Animal Cytology and Evolution. CUP Archive; Cambridge, UK: 1977.

Ezaz T., Berra T.M., Graves J.A.M. Karyotype of the Australian nurseryfish, Kurtus gulliveri (Kurtidae: Perciformes) Chromosome Sci. 2006;9:85–88.

Majtánová Z., Moy K.G., Unmack P.J., Ráb P., Ezaz T. Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead Craterocephalus amniculus (Atheriniformes, Teleostei) Peer J. Prepr. 2019;7:e27688v27681. doi: 10.7717/peerj.7347. PubMed DOI PMC

Arai R. Fish. Karyotypes: A Check List. Springer Science & Business Media; Berlin, Germany: 2011.

Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Orti G. Phylogenetic classification of bony fishes. BMC Evolut. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC

Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC

Ráb P., Rábová M., Pereira C.S., Collares-Pereira M.J., Pelikánová Š. Chromosome studies of European cyprinid fishes: Interspecific homology of leuciscine cytotaxonomic marker—The largest subtelocentric chromosome pair as revealed by cross-species painting. Chromosome Res. 2008;16:863. doi: 10.1007/s10577-008-1245-3. PubMed DOI

Viana P.F., Ezaz T., de Bello Cioffi M., Jackson Almeida B., Feldberg E. Evolutionary Insights of the ZW Sex Chromosomes in Snakes: A New Chapter Added by the Amazonian Puffing Snakes of the Genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC

Near T.J., Sandel M., Kuhn K.L., Unmack P.J., Wainwright P.C., Smith W.L. Nuclear gene-inferred phylogenies resolve the relationships of the enigmatic Pygmy Sunfishes, Elassoma (Teleostei: Percomorpha) Mol. Phylogenet. Evolut. 2012;63:388–395. doi: 10.1016/j.ympev.2012.01.011. PubMed DOI

Molina W.F. Chromosomal changes and stasis in marine fish groups. Fish. Cytogenet. 2007;31:69–110.

Abramyan J., Ezaz T., Graves J.A.M., Koopman P. Z and W sex chromosomes in the cane toad (Bufo marinus) Chromosome Res. 2009;17:1015. doi: 10.1007/s10577-009-9095-1. PubMed DOI

Almeida-Toledo L., Foresti F., Daniel M., Toledo-Filho S. Sex chromosome evolution in fish: The formation of the neo-Y chromosome in Eigenmannia (Gymnotiformes) Chromosoma. 2000;109:197–200. doi: 10.1007/s004120050428. PubMed DOI

Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J.A.M. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13 doi: 10.1007/s10577-005-1010-9. PubMed DOI

Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC

Traut W., Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, platyfish and guppy. Chromosome Res. 2001;9:659–672. doi: 10.1023/A:1012956324417. PubMed DOI

Charlesworth B. The evolution of sex chromosomes. Science. 1991;251:1030–1033. doi: 10.1126/science.1998119. PubMed DOI

Graves J.A.M. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu. Rev. Genet. 2008;42:565–586. doi: 10.1146/annurev.genet.42.110807.091714. PubMed DOI

Muller H.J. A gene for the fourth chromosome of Drosophila. J. Exp. Zool. 1914;17:325–336. doi: 10.1002/jez.1400170303. DOI

Ohno S. Sex chromosome and sex-linked genes. Chromosoma. 1967;23:1–9. doi: 10.1007/BF00293307. DOI

De Freitas N.L., Al-Rikabi A.B., Bertollo L.A.C., Ezaz T., Yano C.F., de Oliveira E.A., Hatanaka T., de Bello Cioffi M. Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Cur. Genomics. 2018;19:216–226. doi: 10.2174/1389202918666170711160528. PubMed DOI PMC

Ezaz T., Deakin J.E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evolut. Biol. 2014;1:1–9. doi: 10.1155/2014/104683. DOI

Kejnovský E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. Expansion of microsatellites on evolutionary young Y chromosome. PLoS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC

Viana P.F., Ezaz T., Marajó L., Ferreira M., Zuanon J., Cioffi M.B., Bertollo L.A., Gross M.C., Feldberg E. Genomic Organization of Repetitive DNAs and Differentiation of an XX/XY Sex Chromosome System in the Amazonian Puffer Fish, Colomesus asellus (Tetraodontiformes) Cytogenet. Genome Res. 2017;153:41–49. doi: 10.1159/000484423. PubMed DOI

Yano C.F., Bertollo L.A.C., Liehr T., Troy W.P., Cioffi M.d.B. W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. J. Hered. 2016;107:342–348. doi: 10.1093/jhered/esw021. PubMed DOI PMC

Schartl M. Sex chromosome evolution in non-mammalian vertebrates. Cur. Opin. Genet. Dev. 2004;14:634–641. doi: 10.1016/j.gde.2004.09.005. PubMed DOI

Volff J.-N., Nanda I., Schmid M., Schartl M. Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sex. Dev. 2007;1:85–99. doi: 10.1159/000100030. PubMed DOI

Cioffi M., Kejnovsky E., Bertollo L. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI

Nanda I., Feichtinger W., Schmid M., Schröder J.H., Zischler H., Epplen J.T. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. Mol. Evolut. 1990;30:456–462. doi: 10.1007/BF02101117. DOI

Gamble T., Geneva A.J., Glor R.E., Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2014;68:1027–1041. doi: 10.1111/evo.12328. PubMed DOI PMC

Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12 doi: 10.1186/1471-2156-12-90. PubMed DOI PMC

Bertollo L., Cioffi M., Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Boca Raton, FL, USA: 2015. pp. 21–26.

Völker M., Ráb P. Direct chromosome preparation from regenerating fish fin tissue. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Ray-Fin Fishes and Chondrichthyans) CRC Press; Boca Raton, FL, USA: 2015. pp. 37–41.

Salvadori S., Coluccia E., Deiana A.M. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. C-Banding; pp. 88–91.

Ezaz M.T., McAndrew B., Penman D. Spontaneous diploidization of the maternal chromosome set in Nile tilapia (Oreochromis niloticus L.) eggs. Aquac. Res. 2004;35:271–277. doi: 10.1111/j.1365-2109.2004.01010.x. DOI

Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. pp. 118–131.

Bonillo C., Coutanceau J., D’Cotta H., Ghigliotti L., Ozouf-Costaz C., Pisano E. Standard fluorescence in situ hybridization procedures. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. pp. 103–118.

Domaschenz R., Livernois A.M., Rao S., Ezaz T., Deakin J.E. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Mol. Cytogenet. 2015;8:104. doi: 10.1186/s13039-015-0208-6. PubMed DOI PMC

Ingles E.D., Deakin J.E. Global DNA Methylation patterns on marsupial and devil facial tumour chromosomes. Mol. Cytogenet. 2015;8:74. doi: 10.1186/s13039-015-0176-x. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae)

. 2023 Apr 20 ; 13 (8) : . [epub] 20230420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...