Chromosomes of Asian cyprinid fishes: Novel insight into the chromosomal evolution of Labeoninae (Teleostei, Cyprinidae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38324533
PubMed Central
PMC10849230
DOI
10.1371/journal.pone.0292689
PII: PONE-D-23-14589
Knihovny.cz E-zdroje
- MeSH
- chromozomální aberace MeSH
- chromozomy * genetika MeSH
- Cyprinidae * genetika MeSH
- fylogeneze MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Thajsko MeSH
- Názvy látek
- ribozomální DNA MeSH
The Labeoninae subfamily is a highly diversified but demonstrably monophyletic lineage of cyprinid fishes comprising five tribes and six incertae sedis genera. This widely distributed assemblage contains some 48 genera and around 480 recognized species distributed in freshwaters of Africa and Asia. In this study, the karyotypes and other chromosomal properties of five Labeoninae species found in Thailand Labeo chrysophekadion (Labeonini) and Epalzeorhynchos bicolor, Epalzeorhynchos munense, Henicorhynchus siamensis, Thynnichthys thynnoides (´Osteochilini´) were examined using conventional and molecular cytogenetic protocols. Our results confirmed a diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive structural chromosomal rearrangements. Karyotype of L. chrysophekadion contained 10m+6sm+20st+14a, 32m+10sm+8st for H. siamensis, 20m+12sm+10st+8a in E. bicolor, 20m+8sm+8st+14a in E. munense, and 18m+24sm+8st in T. thynnoides. Except for H. siamensis, which had four sites of 5S rDNA sites, other species under study had only one chromosome pair with those sites. In contrast, only one pair containing 18S rDNA sites were found in the karyotypes of three species, whereas two sites were found in that of E. bicolor. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these labeonine species largely corresponded to the inferred phylogenetic tree. In spite of the 2n stability, diverse patterns of rDNA and microsatellite distribution as well as their various karyotype structures demonstrated significant evolutionary differentiation of Labeoninae genomes as exemplified in examined species. Labeoninae offers a traditional point of view on the evolutionary forces fostering biological diversity, and the recent findings add new pieces to comprehend the function of structural chromosomal rearrangements in adaption and speciation.
Department of Biology Faculty of Science Khon Kaen University Muang Khon Kaen Thailand
Faculty of Interdisciplinary Studies Khon Kaen University Nong Khai Campus Muang Nong Khai Thailand
Institute of Human Genetics University Hospital Jena Jena Germany
School of Agriculture and Natural Resources University of Phayao Tumbol Maeka Muang Phayao Thailand
Zobrazit více v PubMed
Tan M, Armbruster JW. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa 2018;4476(1): 6–39. doi: 10.11646/zootaxa.4476.1.4 PubMed DOI
Yang L, Arunachalam M, Sado T, Levin BA, Golubtsov AS, Freyhof J, et al. Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 2012;65(2): 362–379. doi: 10.1016/j.ympev.2012.06.007 PubMed DOI
FAO. The State of World Fisheries and Aquaculture. 2022. Towards Blue Transformation: Rome; 2022. https://www.fao.org/3/cc0461en/cc0461en.pdf
Arai R. Fish karyotypes: a check list. 1
Phimphan S, Chaiyasan P, Suwannapoom C, Reungsing M, Juntaree S, Tanomtong A, et al. Comparative karyotype study of three Cyprinids (Cyprinidae, Cyprininae) in Thailand by classical cytogenetic and FISH techniques. Comp. Cytogenet. 2020;14(4):597. doi: 10.3897/CompCytogen.v14i4.54428 PubMed DOI PMC
Yang L, Sado T, Hirt MV, Pasco-Viel E, Arunachalam M, Li J, et al. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 2015;85: 97–116. doi: 10.1016/j.ympev.2015.01.014 PubMed DOI
Yang L, Naylor GJ, Mayden RL. Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 2022;166: 107323. doi: 10.1016/j.ympev.2021.107323 PubMed DOI
Conway KW. Osteology of the South Asian Genus DOI
Stout CC, Tan M, Lemmon AR, Lemmon EM, Armbruster JW. Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evol. Biol. 2016;16: 1–13. doi: 10.1186/s12862-016-0819-5 PubMed DOI PMC
Kim DS, Song HY, Bang IC, Nam YK. Cytogenetic analysis of Korean shinner,
Sola L, Gornung E. Classical and molecular cytogenetics of the zebrafish, PubMed DOI
Rábová M, Ráb P, Ozouf-Costaz C, Ene C, Wanzeböck J. Comparative cytogenetics and chromosomal characteristics of ribosomal DNA in the fish genus PubMed DOI
Libertini A, Sola L, Rampin M, Rossi A.R., Iijima K, Ueda T. Classical and molecular cytogenetic characterization of allochthonous European bitterling PubMed DOI
Boron A, Porycka K, Ito D, Abe S, Kirtiklis L. Comparative molecular cytogenetic analysis of three PubMed DOI
Bishani A, Prokopov DY, Romanenko SA, Druzhkova AS, Interesova EA, Graphodatsky AS, et al. Repetitive DNA characterization in Cyprinid species with different ploidy level. In: Chromosomes and Mitosis (pp. 25–25). Russia: Novosibirsk National Research State University; 2019. pp. 25–25.
Aiumsumang S, Chaiyasan P, Khoomsab K, Supiwong W, Phim-phan ATS. Comparative chromosome mapping of repetitive DNA in four min-now fishes (Cyprinidae, Cypriniformes). Caryologia 2022;75(2): 71–80. doi: 10.36253/caryologia-1523 DOI
Saenjundaeng P, Kaewmad P, Supiwong W, Pinthong K, Pengseng P, Tanomtong A. Karyotype and characteristics of nucleolar organizer regions in longfin carp, DOI
Saenjundaeng P, Supiwong W, Sassi FMC, Bertollo LAC, Rab P, Kretschmer R,. Chromosomes of Asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus PubMed DOI PMC
Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn. 2012;7: 197–221. doi: 10.1159/000337950 PubMed DOI
Yüksel E, Gaffaroğlu M. The analysis of nucleolar organizer regions in DOI
Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ. Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet. Genome Res. 2005;109(4): 507–511. doi: 10.1159/000084211 PubMed DOI
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a PubMed DOI
Kirtiklis L, Ocalewicz K, Wiechowska M, Boroń A, Hliwa P. Molecular cytogenetic study of the European bitterling PubMed DOI PMC
Li S, Zhou Y, Yang C, Fan S, Huang L, Zhou T, et al. Comparative analyses of hypothalamus transcriptomes reveal fertility-, growth-, and immune-related genes and signal pathways in different ploidy cyprinid fish. Genomics 2021;113(2): 595–605. doi: 10.1016/j.ygeno.2021.01.004 PubMed DOI
Gaffaroğlu M, Karasu-Ayata M, Unal-Karakus S. Karyomorphology of Two Cyprinid Barbels (Teleostei: Cyprinidae) from Gediz River, Turkey. Cytol. Genet. 2022;56: 41–547. doi: 10.3103/S0095452722060032 DOI
Kentachalee N, Pinthong K, Tongnunui S, Tanomtong A, Juntharat S, Supiwong W. First Report on Genetic Structure of
Donsakul T, Rangsiruji A, Magtoon W. Karyotypes of five cyprinid fishes (Family Cyprinidae):
Donsakul T, Magtoon W, Rangsiruji A. Karyological studies of four Cyprinid fishes:
Magtoon W, Arai R. Karyotypes and distribution of nucleolus organizer regions in cyprinid fishes from Thailand. J. Ichthyol. 1993;40(1): 77–85.
Donsakul T, Rangsiruji A, Magtoon W. Karyotypes of four cyprinid fishes:
Zhang JX, Liu XF, Wang ZX, Jin GQ. A comparative study on the karyotypes among the hybrid fish (
Gui JF, Li YC, Li K, Zhou T. Studies on the karyotype of Chinese cyprinid fish. (VII) Karyotypic analyses of fifteen species of Barbinae with consideration for their phyletic evolution. Transactions Chi. Ichthyol. Soc. 1986;5: 119–127.
Ren XH, Yu XJ. Characterization of nucleolar organizer regions of twelve species of Chinese cyprinid fishes. Caryologia 1993;46: 201–207. doi: 10.1080/00087114.1993.10797260 DOI
Ren XH, Cui J, Yu Q. Chromosomal heterochromatin differentiation of cyprinid fishes. Genetica 1992;87: 47–51.
Yu XJ, Zhou T, Li YC, Li K, Zhou M. Chromosomes of Chinese freshwater fishes. Science Publishing House: USA; 1989.
Lakra WS & Krishna G. G-banded karyotypes of three species of Indian major carps. CIS 1994;57: 23–25.
Rishi K.K. Chromosomal studies on four cyprinid fishes. Int. J. Acad. Ich. 1981;2: 1–4.
Nagpure NS, Kushwaha B, Srivastava SK, Ponniah AG. Comparative cytogenetic studies in Indian major carps
Manna GK, Khuda-Bukhsh AR. Karyomorphology of cyprinid fishes and cytological evaluation of the family. Nucleus 1977;20: 119–127.
Khuda-Bukhsh AR, Rahman A, Chanda T, Nayak K, Khuda-Bukhsh A. Diploid numbers and chromosome formulae of some 29 species of Indian teleosts (Pisces). CIS 1995;58: 38–39.
Chanda T.
Tripathi NK, Sharma OP. Cytological studies on six cyprinid fishes. Genetica 1987;73: 243–246.
Lakra WS, Rishi KK. Chromosomes of Indian fishes: an annotated list. Indian J. Anim. Sci. 1991;61: 342–349.
Donsakul T, Magtoon W. A chromosome study of three Cyprinid fishes,
Donsakul T, Magtoon W, Rangsiruji A. Karyotypes of five cyprinid fishes (family Cyprinidae):
Donsakul T, Runsiruji A, Magtoon W. Karyotypes of three species of cyprinid fishes DOI
Suzuki A, Taki Y, Mochizuki M, Hirata J. Chromosomal speciation in Eurasian and Japanese Cyprinidae (Pisces, Cypriniformes). Cytobios 1995;83: 171–186.
Hinegardner R, Rosen DE. Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 1972;106(951):621–644.
Krysanov EY, Golubtsov AS. Karyotypes of three Garra species from Ethiopia. J. Fish Biol. 1993;42(3):465–467.
Khuda-Bukhsh AR. Karyotype studies in two species of hill stream fishes,
Khuda-Bukhsh AR, Barat A. Chromosomes in fifteen species of Indian teleosts (Pisces). Caryologia 1987;40(1–2):131–144.
Sahoo PK, Nanda P, Barat A. Karyotypic Analysis of DOI
Li K, Li YC, Gui JF, Xie XZ, Zhou T. Studies on the karyotypes of Chinese cyprinid fishes. IX. Karyotypes of nine species of Abramidinae and one species of Xenocyprininae. Acta Hydrobiol. Sin. 1986;10:189–193.
Khuda-Bukhsh AR, Chanda T, Barat A. Karyomorphology and evolution in some Indian hillstream fishes with particular reference to polyploidy in some species. Indo-Pac. Fishes 1986; 886–898.
Khuda-Bukhsh AR, Gupta SK, Goswami S. Karyotypic studies in Garra lamta and Mystus cavassius (Pisces). J. Anim. Sci. 1980;89: 557–562.
Nagpure NS, Kumar R, Srivastava SK, Kushwaha B, Gopalakrishnan A, Basheer VS. Cytogenetic characterization of two marine ornamental fishes, Chaetodon collare and Stegastes insularis. J. Mar. Biol. Ass. 2006;48(2):267–269.
Guégan JF, Morand S. Polyploid hosts: strange attractors for parasites?. Oikos 1996;77(2):366–370. doi: 10.2307/3546079 DOI
Duran A, Barquinero JF, Caballín MR, Ribas M, Puig P, Egozcue J, et al. Suitability of FISH painting techniques for the detection of partial-body irradiations for biological dosimetry. Radiat. Res. 2002; 157(4):461–468. doi: 10.1667/0033-7587(2002)157[0461:sofptf]2.0.co;2 PubMed DOI
Olaoluwa PM, Idowu AI. Karyological Studies of Garra trewavasae Monod 1950 from Jos Plateau, Nigeria. Environtropica 2019;(15):120–128.
John G, Barat A, Lakra WS. 1993. Localization of nucleolar organizer regions in
Arai R, Magtoon W. Karyotypes of four cyprinid fishes from Thailand. Bull. Nat. Mus. Nat. Sci. 1991;17: 183–188.
Rishi KK, Rishi S. Giemsa banding in fish chromosomes. Cytol. Genet. 1981;3:103–106.
Rock J, Eldridge M, Champion A, Johnston P, Joss J. Karyotype and nuclear DNA content of the Australian lungfish, PubMed DOI
Seetapan K. Karyotypes of sex fish species of the family Cyprinidae. In: Proceedings of the 45th Kasetsart University Annual Conference: Fisheries. Thailand: Kasetsart University; 2007. pp. 749–758
Sărășan A, Józsa E, Ardelean AC, Drăguț L. Sensitivity of geomorphons to mapping specific landforms from a digital elevation model: A case study of drumlins. Area 2019;51(2):257–267. doi: 10.1111/area.12451 DOI
Paugy D, Guégan JF, Agnèse JF. Three simultaneous and independent approaches to the characterization of a new species of
Khuda-Bukhsh AR, Chanda T. Somatic chromosomes of three species of hillstream fishes from Assam. In: Das P, Jhingran AG, editors. Fish genetics in India. Today & Tomorrow’s Printers and Publishers; 1989. pp. 69–73.
Kligerman AD, Bloom SE. Rapid chromosome preparations from solid tissues of fishes. J. Fish. Res. Board Can. 1977;34:266–269.
Nagpure NS, Kushwaha B, Srivastava SK, Kumar R, Gopalakrishnan A, Baseer VS, et al. Characterization of three endemic fish species from Western Ghats using cytogenetic markers. Nucleus 2003;46:110–114.
Rishi KK, Mandhan RP. Analysis of C-banded heterochromatin in the chromosomes of
Magtoon W, Arai R. Karyotypes of three cyprinid fishes, DOI
Wang RF, He WS, Wu SF. Study on the karyotype and banding of
Kulabtong S, Suksri S, Nonpayom C, Soonthornkit Y. Rediscovery of the critically endangered cyprinid fish Epalzeorhynchos bicolor (Smith, 1931) from West Thailand (Cypriniformes, Cyprinidae). Biodivers. J. 2014;5(2):371–373.
Phomikong P, Udduang S, Fukushima M, Srichareondham B, Rattanachamnong D, Jutagate T. Larval fish assemblage patterns in three tributaries of Mekong River in Thailand. Indian J. Fish. 2018;65(2):1–15. doi: 10.21077/ijf.2018.65.2.75121-01 DOI
Yang JX, Winterbottom R. Phylogeny and zoogeography of the cyprinid Genus DOI
Kottelat M. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 2013;27:1–663.
Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, Toledo LFA, editors. Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans. CRC Press; 2015. pp. 21–26.
Howell WM, Black DA. 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 1980;36:1014–1015. doi: 10.1007/BF01953855 PubMed DOI
Yano CF, Bertollo LAC, Cioffi MB. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH). Springer; 2017. pp. 429–443.
Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM. A tandemly repetitive centromeric DNA sequence of the fish PubMed DOI
Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of Erythrinidae fish PubMed DOI
Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation on the Y chromosome in PubMed DOI
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas 1964;52,:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x DOI
Wolf U, Ritter H, Atkin NB, Ohno S. Polyploidization in the fish family Cyprinidae, order Cypriniformes. Humangenetik 1969;7:240–244. PubMed
Gerbi SA. The evolution of eukaryotic ribosomal DNA. Biosyst. 1986;19(4):247–258. doi: 10.1016/0303-2647(86)90001-8 PubMed DOI
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma 2018;127:141–150. doi: 10.1007/s00412-017-0651-8 PubMed DOI PMC
Khensuwan S, Sassi FMC, Moraes RLR, Jantarat S, Seetapan K, Phintong K, et al. Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of ‘Poropuntiinae’ (Teleostei, Cyprinidae). Animals 2023;13(8):1415. doi: 10.3390/ani13081415 PubMed DOI PMC
White MJD. Animal cytology and evolution. 3rd ed. England: Cambridge University Press; 1973.
Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation?. Annu. Rev. Ecol. Evol. Syst. 2008;39:21–42. doi: 10.1146/annurev.ecolsys.39.110707.173532 PubMed DOI PMC
Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8(9):e1000501. doi: 10.1371/journal.pbio.1000501 PubMed DOI PMC
Charlesworth B, Barton NH. The spread of an inversion with migration and selection. Genetics 2018; 208(1):377–382. doi: 10.1534/genetics.117.300426 PubMed DOI PMC
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33(6):427–440. doi: 10.1016/j.tree.2018.04.002 PubMed DOI
Terêncio ML, Schneider CH, Gross MC, Vicari MR, Farias IP, Passos KB, et al. Evolutionary dynamics of repetitive DNA in PubMed DOI
Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, B Cioffi M. Chromosomal mapping of repetitive DNAs in PubMed DOI PMC
Cioffi MB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A, Yano CF, et al. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). PLoS One 2015;10(6):e0130199. doi: 10.1371/journal.pone.0130199 PubMed DOI PMC
Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF, et al. Evolutionary relationships and cytotaxonomy considerations in the genus PubMed DOI
Moraes RLR, Sember A, Bertollo LAC, De Oliveira EA, Ráb P, Hatanaka T, et al. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus PubMed DOI PMC
Sassi FMC, de Oliveira EA, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF, et al. Chromosomal evolution and evolutionary relationships of PubMed DOI PMC
Ellegren H. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol. Evol. 2010;25(5):283–291. doi: 10.1016/j.tree.2009.12.004 PubMed DOI
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. plants 2019;5(8):833–845. doi: 10.1038/s41477-019-0487-8 PubMed DOI
Hong Y, Zhou T. Studies on the karyotype and C-banding patterns in
Yu XY, Yu XJ. A schizothoracine fish species,