Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties

. 2018 May 30 ; 8 (6) : . [epub] 20180530

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29848967

Composite insulation materials are an inseparable part of numerous electrical devices because of synergy effect between their individual parts. One of the main aims of the presented study is an introduction of the dielectric properties of nanoscale magnesium oxide powder via Broadband Dielectric Spectroscopy (BDS). These unique results present the behavior of relative permittivity and loss factor in frequency and temperature range. Following the current trends in the application of inorganic nanofillers, this article is complemented by the study of dielectric properties (dielectric strength, volume resistivity, dissipation factor and relative permittivity) of epoxy-based composites depending on the filler amount (0, 0.5, 0.75, 1 and 1.25 weight percent). These parameters are the most important for the design and development of the insulation systems. The X-ray diffraction patterns are presented for pure resin and resin with optimal filler amount (1 wt %), which was estimated according to measurement results. Magnesium oxide nanoparticles were also treated by addition of silane coupling agent ( γ -Glycidoxypropyltrimethoxysilane), in the case of optimal filler loading (1 wt %) as well. Besides previously mentioned parameters, the effects of surface functionalization have been observed by two unique measurement and evaluation techniques which have never been used for this evaluation, i.e., reduced resorption curves (RRCs) and voltage response method (VR). These methods (developed in our departments), extend the possibilities of measurement of composite dielectric responses related to DC voltage application, allow the facile comparability of different materials and could be used for dispersion level evaluation. This fact has been confirmed by X-ray diffraction analyses.

Zobrazit více v PubMed

Marfunin A.S. Advanced Mineralogy: Volume 1 Composition, Structure, and Properties of Mineral Matter: Concepts, Results, and Problems. Springer; Berlin, Germany: 1994.

Shand M.A. The Chemistry and Technology of Magnesia. John Wiley & Sons; Hoboken, NJ, USA: 2006.

Haynes W.M., Lide D.R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. CRC Press; Boca Raton, FL, USA: 2011.

Zhang B., Peng J., Zhang L., Ju S. Optimization of preparation for magnesium oxide by calcination from basic magnesium carbonate using response surface methodology. In: Mathaudhu S.N., Sillekens W.H., Neelameggham N.R., Hort N., editors. Magnesium Technology. Springer; Cham, Germany: 2012. pp. 75–79.

Vu A.H., Jiang S., Kim Y.H., Lee C.H. Controlling the physical properties of magnesium oxide using a calcination method in aerogel synthesis: its application to enhanced sorption of a sulfur compound. Ind. Eng. Chem. Res. 2014;53:13228–13235. doi: 10.1021/ie5018546. DOI

Costa D., Chizallet C. Water on extended and point defects at MgO surfaces. J. Chem. Phys. 2006;125:054702. doi: 10.1063/1.2212407. PubMed DOI

Li Q., Zhang S.I., Wang J.P., Gao H. Process analysis of MgO film on NdFeB magnet by sol–gel method. Surf. Eng. 2009;25:589–593. doi: 10.1179/026708408X334131. DOI

Sharma G., Soni R., Jasuja N.D. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J. Taibah Univ. Sci. 2017;11:471–477. doi: 10.1016/j.jtusci.2016.09.004. DOI

Wilson L.O. Magnesium oxide as a high-temperature insulant. IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 1981;128:159. doi: 10.1049/ip-a-1.1981.0026. DOI

Senbayram M., Gransee A., Wahle V., Thiel H. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop. Pasture Sci. 2015;66:1219–1229. doi: 10.1071/CP15104. DOI

Purwajanti S., Zhou L., Nor Y.A., Zhang J., Zhang H., Huang X., Yu C. Synthesis of magnesium oxide hierarchical microspheres: A dual-functional material for water remediation. ACS Appl. Mater. Interfaces. 2015;7:21278–21286. doi: 10.1021/acsami.5b05553. PubMed DOI

Gray J.E., Luan B. Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 2002;336:88–113. doi: 10.1016/S0925-8388(01)01899-0. DOI

Calebrese C., Hui L., Schadler L.S., Nelson J.K. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 2011;18:938–945. doi: 10.1109/TDEI.2011.5976079. DOI

Dikshit V., Bhudolia S.K., Joshi S.C. Multiscale polymer composites: A review of the interlaminar fracture toughness improvement. Fibers. 2017;5:38. doi: 10.3390/fib5040038. DOI

Wang J.A., Novaro O., Bokhimi X., Lopez T., Gomez R., Navarrete J., Llanos M.E., Lopez-Salinas E. Structural defects and acidic and basic sites in sol-gel MgO. J. Phys. Chem. B. 1997;101:7448–7451. doi: 10.1021/jp970233l. DOI

Ding Y., Zhang G., Wu. H., Hai B., Wang L., Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis. Chem. Mater. 2001;13:435–440. doi: 10.1021/cm000607e. DOI

Andritsch T. Epoxy Based Nanodielectrics for High Voltage DC-Applications—Synthesis, Dielectric Properties and Space Charge Dynamics. Delft University of Technology; Delft, The Netherlands: 2010.

Magnesium Oxide (MgO, 99+%, 20 nm) [(accessed on 20 April 2018)]; Available online: www.nanoamor.com/inc/sdetail/11013/2543.

Kim M.I., Kim S., Kim T., Lee D.K., Seo B., Lim C.-S. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings. 2017;7:231. doi: 10.3390/coatings7120231. PubMed DOI

Domun N., Paton K.R., Hadavinia H., Sainsbury T., Zhang T., Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials. 2017;10:1179. doi: 10.3390/ma10101179. PubMed DOI PMC

Zhang X., Wen H., Wu Y. Computational thermomechanical properties of silica–epoxy nanocomposites by molecular dynamic simulation. Polymers. 2017;9:430. doi: 10.3390/polym9090430. PubMed DOI PMC

Simcha S., Dotan A., Kenig S., Dodiuk H. Characterization of hybrid epoxy nanocomposites. Nanomaterials. 2012;2:348–365. doi: 10.3390/nano2040348. PubMed DOI PMC

Wang Z., Liu J., Cheng Y., Chen S., Yang M., Huang J., Wang H., Wu G., Wu H. Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials. 2018;8:242. doi: 10.3390/nano8040242. PubMed DOI PMC

Yamaguchi S., Inoue S., Sakai T., Abe T., Kitagawa H., Imazato S. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks. Comput. Methods Biomech. Biomed. Eng. 2017;20:714–719. doi: 10.1080/10255842.2017.1293664. PubMed DOI

Sfondrini M.F., Massironi S., Pieraccini G., Scribante A., Vallittu P.K., Lassila L.V., Gandini P. Flexural strengths of conventional and nanofilled fiber-reinforced composites: A three-point bending test. Dent. Traumatol. 2014;30:32–35. doi: 10.1111/edt.12055. PubMed DOI

Mentlík V. Dielektrické Prvky a Systémy. BEN—Technická Literatura; Praha, Czech Republic: 2006.

Németh E. Measuring voltage response: A non-destructive diagnostic test method HV of insulation. IEE Proc. Sci. Meas. Technol. 1999;146:249–252. doi: 10.1049/ip-smt:19990651. DOI

Novocontrol Technologies . User’s Manual: Alpha-A High Resolution Dielectric, Conductivity, Impedance and Gain Phase Modular Measurement System. Novocontrol Technologies; Hundsangen, Germany: 2012.

Čermák M., Kadlec P., Kruliš Z., Polanský R. Dielectric analysis of halloysite nanotubes LLDPE nanocomposite compounds. AIP Conf. Proc. 2016;1713:090007. doi: 10.1063/1.4942303. DOI

Polanský R., Kadlec P., Kolská Z., Švorčík V. Influence of dehydration on the dielectric and structural properties of organically modified montmorillonite and halloysite nanotubes. Appl. Clay Sci. 2017;147:19–27. doi: 10.1016/j.clay.2017.07.027. DOI

Evacuable Pellet Press for 13 Mm Pellets. [(accessed on 17 May 2018)]; Available online: www.piketech.com/pm-evacuable-pellet-press.html.

Harvánek L. Nanomaterials for Electrotechnic. University of West Bohemia; Pilsen, Czech Republic: 2017.

International Electrotechnical Commission (IEC) Electrical Insulation—Thermal Evaluation and Designation. International Electrotechnical Commission; Geneva, Switzerland: 2007. IEC 60085:2007.

Product Information—Epoxylite®, 3750 LV, Elantas® Italia S.r.l, Collechion, Italy. [(accessed on 17 May 2018)];2009 Available online: http://www.elantas.com/europe/products/impregnating-materials.html.

International Electrotechnical Commission (IEC) Recommended Methods for the Determination of the Permittivity and Dielectric Dissipation Factor of Electrical Insulating Materials at Power, Audio and Radio Frequencies Including Metre Wavelengths. IEC; Geneva, Switzerland: 1969. IEC 60250:1969.

International Electrotechnical Commission (IEC) Methods of Test for Electric Strength of Solid Insulating Materials. IEC; Geneva, Switzerland: 2013. IEC 60243-1:2013.

International Electrotechnical Commission (IEC) Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-2: Determination of Resistive Properties (DC Methods) IEC; Geneva, Switzerland: 2015. IEC 62631-3-2:2015.

International Electrotechnical Commission (IEC) Standard Conditions for Use Prior to and During the Testing of Solid Electrical Insulating Materials. IEC; Geneva, Switzerland: 2010. IEC 60212:2010.

Li H., Wang C., Guo Z., Wang H., Zhang Y., Hong R., Peng Z. Effects of silane coupling agents on the electrical properties of silica/epoxy nanocomposites; Proceedings of the 2016 IEEE International Conference on Dielectrics; Montpeliere, France. 3–7 July 2016; pp. 1036–1039. DOI

Andritsch T., Kochetov R., Morshuis P.H.F., Smit J.J. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites; Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics; Potsdam, Germany. 4–9 July 2010; pp. 1–4. DOI

Tanaka T., Imai T. Advanced Nanodielectrics: Fundamentals and Application. Pan Stanford; Singapore: 2017.

Do Nascimento E., Ramos A., Windmoller D., Reig Rodrigo P., Teruel Juanes R., Ribe Greus A., Amigo Borras V., Coelho L.A.F. Breakdown, free-volume and dielectric behavior of the nanodielectric coatings based on epoxy/metal oxides. J. Mater. Sci. Mater. Electron. 2016;27:9240–9254. doi: 10.1007/s10854-016-4962-y. DOI

Artbauer J.J. Electric strength of polymers. J Phys. D Appl. Phys. 1996;29:446–456. doi: 10.1088/0022-3727/29/2/024. DOI

Nelson J.K., Utracki L.A., MacCrone R.K., Reed C.W. Role of the interface in determining the dielectric properties of nanocomposites; Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society; Boulder, CO, USA. 20 October 2004; pp. 314–317. DOI

Nan C.W., Shen Y., Ma J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010;40:131–151. doi: 10.1146/annurev-matsci-070909-104529. DOI

Zhang L., Bass P., Cheng. Z. Revisiting the percolation phenomena in dielectric composites with conducting fillers. Appl. Phys. Lett. 2014;105:042905. doi: 10.1063/1.4892000. DOI

Pelíšková M., P. Sáha. The Effect of Expanded Structure on Electric Properties of Polymer Composites with Electroconductive Fillers. Chem. Listy. 2012;106:1104–1109.

Motaghi A., Hrymak A., Motlagh G.H. Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 2015;132:41744. doi: 10.1002/app.41744. DOI

Mentlík V., Michal O. Influence of SiO2 nanoparticles and nanofibrous filler on the dielectric properties of epoxy-based composites. Mater. Lett. 2018;223:41–44. doi: 10.1016/j.matlet.2018.04.021. DOI

Mentlík V., Trnka P., Hornak J., Totzauer P. Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles. Energies. 2018;11:508. doi: 10.3390/en11030508. DOI

Boček J., Matějka L., Mentlík V., Trnka P., Šlouf M. Electrical and thermomechanical properties of epoxy-POSS nanocomposites. Eur. Polym. J. 2011;47:861–872. doi: 10.1016/j.eurpolymj.2011.02.023. DOI

Gao M., Zhang P., Wang F. Effect of percolation and interfacial characteristics on breakdown behavior of nano-Silica/Epoxy composites; Proceedings of the 2013 8th International Forum on Strategic Technology; Ulaanbaatar, Mongolia. 28 June–1 July 2013; pp. 120–123. DOI

Lewis T.J. Interfaces: Nanometric dielectrics. J. Phys. D. 2005;38:202–212. doi: 10.1088/0022-3727/38/2/004. DOI

Zou C., Fothergill J.C., Rowe S.W. The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008;15:106–117. doi: 10.1109/T-DEI.2008.4446741. DOI

Abdullah S.I., Ansari M.N.M. Mechanical properties of grapheme oxide (GO)/epoxy composites. HBRC J. 2015;11:151–156. doi: 10.1016/j.hbrcj.2014.06.001. DOI

Kherzi T., Sharif M., Pourabas B. Polythiophene–graphene oxide doped epoxy resin nanocomposites with enhanced electrical, mechanical and thermal properties. RSC Adv. 2016;6:93680–93693. doi: 10.1039/C6RA16701B. DOI

Chen G., Li S., Zhong L. Space charge in nanodielectrics and its impact on electrical performance; Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials; Sydney, Australia. 19–22 July 2015; pp. 36–39. DOI

Ponyrko S., Kobera L., Brus J., Matějka L. Epoxy-silica hybrids by nonaqueous sol-gel process. Polymer. 2013;54:6271–6282. doi: 10.1016/j.polymer.2013.09.034. DOI

Lin J., Siddiqui J.A., Ottenbrite R.M. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym. Adv. Technol. 2001;12:285–292. doi: 10.1002/pat.64. DOI

Park S.J., Jin J.S. Effect of silane coupling agent on tnterphase and performance of glass fibers/unsaturated polyester composites. J. Colloid Interface Sci. 2001;242:174–179. doi: 10.1006/jcis.2001.7788. DOI

Zhou Q., Cho D., Song B.K., Kim H.J. Novel jute/polycardanol biocomposites: Effect of fiber surface treatment on their properties. Compos. Interfaces. 2009;16:781–795. doi: 10.1163/092764409X12477449494437. DOI

Sawpan M.A., Pickering K.L., Fernyhough A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos. A Appl. Sci. Manuf. 2011;42:1189–1196. doi: 10.1016/j.compositesa.2011.05.003. DOI

Mittal K.L. Silanes and Other Coupling Agents. CRC Press; London, UK: 2009.

Rothon R.N. Particulate-Filled Polymer Composites. Rapra Technology; Shrewsbury, UK: 2003.

Han G., Zhang C., Zhang D., Umemura K., Kawai S. Upgrading of urea formaldehyde-bonded reed and wheat straw particleboards using silane coupling agents. J. Wood Sci. 1998;44:282–286. doi: 10.1007/BF00581308. DOI

Luštická I., Vyskočilová-Leitmannová E., Červený L. Functionalization of Mesoporous Silicate Materials. Chem. Listy. 2013;107:114–120.

Shokoohi S., Arefazar A., Khosrokhavar R. Silane coupling agents in polymer-based reinforced composites: A review. J. Reinf. Plast. Compos. 2008;27:473–485. doi: 10.1177/0731684407081391. DOI

Xie Y., Hill C.A.S., Xiao Z., Militz H., Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. A Appl. Sci. Manuf. 2010;41:806–819. doi: 10.1016/j.compositesa.2010.03.005. DOI

Plueddemann E.P. Adhesion through silane coupling agents. J. Adhes. 2008;2:184–201. doi: 10.1080/0021846708544592. DOI

Merhari L. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications. Springer; New York, NY, USA: 2009.

Yu Z.Q., Wu Y., Wei B., Baier H. Boride ceramics covalent functionalization and its effect on the thermal conductivity of epoxy composites. Mater. Chem. Phys. 2015;164:214–222. doi: 10.1016/j.matchemphys.2015.08.049. DOI

Mandhakini M., Lakshmikandhan T., Chandramohan A., Muthukaruppan A. Effect of nanoalumina on the tribology performance of C4-ether-linked bismaleimide-toughened epoxy nanocomposites. Tribol. Lett. 2014;54:67–79. doi: 10.1007/s11249-014-0309-0. DOI

Li L., Li B., Dong J., Zhang J. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J. Mater. Chem. A. 2016;4:13677–13725. doi: 10.1039/C6TA05441B. DOI

Foxton R.M., Nakajima M., Tagami J., Miura H. Effect of acidic pretreatment combined with a silane coupling agent on bonding durability to silicon oxide ceramic. J. Biomed. Mater. Res. B. 2005;73:97–103. doi: 10.1002/jbm.b.30184. PubMed DOI

Kochetov R., Andritsch T., Morshuis P.H.F., Smit J.J. Anomalous behaviour of the dielectric spectroscopy response of nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2012;19:107–117. doi: 10.1109/TDEI.2012.6148508. DOI

Issan H., Ristig S., Kaminski H., Asbach C., Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods. 2014;6:7324–7334. doi: 10.1039/C4AY01203H. DOI

Li X., Zhang H., Jin J., Huang D., Qi X., Zhang Z., Yu D. Quantifying dispersion of nanoparticles in polymer nanocomposites through transmission electron microscopy micrographs. J. Micro Nano-Manuf. 2014;2:021008. doi: 10.1115/1.4027339. DOI

Bugnicourt E., Kehoe T., Latorre M., Serrano C., Philippe S., Schmid M. Recent prospects in the inline monitoring of nanocomposites and nanocoatings by optical technologies. Nanomaterials. 2016;6:150. doi: 10.3390/nano6080150. PubMed DOI PMC

Lively B., Bizga J., Zhong W. Analysis tools for fibrous nanofiller polymer composites: Macro- and nanoscale dispersion assessments correlated with mechanical and electrical composite properties. Polym. Compos. 2013;35:10–18. doi: 10.1002/pc.22628. DOI

Kao K. Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes. Elsevier; San Diego, CA, USA: 2004.

Lv Z., Wang. X., Wu K., Chen X., Cheng Y., Dissado L.A. Dependence of charge accumulation on sample thickness in Nano-SiO2 doped LDPE. IEEE Trans. Dielectr. Electr. Insul. 2013;20:337–345. doi: 10.1109/TDEI.2013.6451375. DOI

Csanyi G.M., Tamus Z.A., Ivancsy T. Investigation of dielectric properties of cable insulation by the extended voltage response method; Proceedings of the 2016 Conference on Diagnostics in Electrical Engineering; Pilsen, Czech Republic. 6–8 September 2016; pp. 1–4. DOI

Chen H., Zheng J., Qiao L., Ying Y., Ji L., Che S. Surface modification of NdFe12Nx magnetic powder using silane coupling agent KH550. Adv. Powder Technol. 2015;26:618–621. doi: 10.1016/j.apt.2015.01.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...