Influence of Nanoparticles on the Dielectric Response of a Single Component Resin Based on Polyesterimide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 1/2021(12822)
University of Žilina
ID 52110883
International Visegrad Fund
SGS-2021-003
University of West Bohemia
ITMS2014+ code 313011ASK8
European Regional Development Fund
PubMed
35683875
PubMed Central
PMC9182917
DOI
10.3390/polym14112202
PII: polym14112202
Knihovny.cz E-zdroje
- Klíčová slova
- 1H NMR measurements, aluminium oxide, dielectric relaxation, dielectric spectroscopy, polyesterimide, zinc oxide,
- Publikační typ
- časopisecké články MeSH
The influence of various types of nanoparticle fillers with the same diameter of 20 nm were separately incorporated into a single component impregnating resin based on a polyesterimide (PEI) matrix and its subsequent changes in complex relative permittivity were studied. In this paper, nanoparticles of Al2O3 and ZnO were dispersed into PEI (with 0.5 and 1 wt.%) to prepare nanocomposite polymer. Dielectric frequency spectroscopy was used to measure the dependence of the real and imaginary parts of complex relative permittivity within the frequency range of 1 mHz to 1 MHz at a temperature range from +20 °C to +120 °C. The presence of weight concentration of nanoparticles in the PEI resin has an impact on the segmental dynamics of the polymer chain and changed the charge distribution in the given system. The changes detected in the 1H NMR spectra confirm that dispersed nanoparticles in PEI lead to the formation of loose structures, which results in higher polymer chain mobility. A shift of the local relaxation peaks, corresponding to the α-relaxation process, and higher mobility of the polymer chains in the spectra of imaginary permittivity of the investigated nanocomposites was observed.
Zobrazit více v PubMed
Godovsky D.Y. Biopolymers · PVA Hydrogels, a Snionic Polymerisation Nanocomposites. Advances in Polymer Science. Volume 153. Springer; Berlin, Germany: 2000. Device Applications of Polymer-Nanocomposites; pp. 165–204. DOI
Watson B.W., Meng L., Fetrow C., Qin Y. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions. Polymers. 2016;8:408. doi: 10.3390/polym8120408. PubMed DOI PMC
Talbi F., David E., Malec D., Mary D. Dielectric Properties of Polyesterimide/SiO2 Nanocomposites; Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); Richland, WA, USA. 20–23 October 2019; pp. 66–69. DOI
Rakhshaei R., Namazi H., Hamishehkar H., Samadi Kafil H., Salehi R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019;136:47590. doi: 10.1002/app.47590. DOI
Ivankova E., Vaganov G., Didenko A., Popova E., Elokhovskiy V., Bugrov A., Svetlichnyi V., Kasatkin I., Yudin V. Investigation of Polyetherimide Melt-Extruded Fibers Modified by Carbon Nanoparticles. Materials. 2021;14:7251. doi: 10.3390/ma14237251. PubMed DOI PMC
Qi C., Yang W., He F., Yao J. The Thermal Properties and Degradability of Chiral Polyester-Imides Based on Several l/d-Amino Acids. Polymers. 2020;12:2053. doi: 10.3390/polym12092053. PubMed DOI PMC
Xia Y., Zhou C., Wang W., Wen X., He S., Chen W. Developing a novel environmental friendly polyester-imide impregnating resin; Proceedings of the IEEE Electrical Insulation Conference (EIC); Seattle, WA, USA. 7–10 June 2015; pp. 551–554. DOI
Fetouhi L., Martinez-Vega J., Petitgas B. Electric conductivity, aging and chemical degradation of polyesterimide resins used in the impregnation of rotating machines. IEEE Trans. Electr. Insul. 2018;25:294–305. doi: 10.1109/TDEI.2018.006823. DOI
Fetouhi L., Malec D., Manfe P., Martinez-Vega J. Experimental Study on the Evolution of Dielectric Properties of Impregnating Varnishes with Thermal Aging; Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); Cancun, Mexico. 21–24 October 2018; pp. 618–621. DOI
Tjong S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006;53:73–197. doi: 10.1016/j.mser.2006.06.001. DOI
Huang L., Lv X., Tang Y., Ge G., Zhang P., Li Y. Effect of Alumina Nanowires on the Thermal Conductivity and Electrical Performance of Epoxy Composites. Polymers. 2020;12:2126. doi: 10.3390/polym12092126. PubMed DOI PMC
Gao J., Long Y., Wu K., Li J., Yin G. Nonmonotonic dielectric relaxation behavior of thermochromic epoxy composite. Mater. Lett. 2022;3:131678. doi: 10.1016/j.matlet.2022.131678. DOI
Min D., Cui H., Hai Y., Li P., Xing Z., Zhang C., Li S. Interfacial regions and network dynamics in epoxy/POSS nanocomposites unravelling through their effects on the motion of molecular chains. Compos. Sci. Technol. 2020;199:108329. doi: 10.1016/j.compscitech.2020.108329. DOI
Helal E., David E., Frechette M., Demarquette N.R. Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: Correlation between rheological, thermal, electrical and dielectric properties. Eur. Polym. J. 2017;94:68–86. doi: 10.1016/j.eurpolymj.2017.06.038. DOI
Xia Y., Zhou C., Liang G., Gu A., Wang W. Polyester-imide solventless impregnating resin and its nano-silica modified varnishes with excellent corona resistance and thermal stability. IEEE Trans. Dielectr. Electr. Insul. 2015;22:372–379. doi: 10.1109/TDEI.2014.004251. DOI
Okuzumi S., Murakami Y., Nagao M., Sekiguchi Y., Reddy C.C., Murata Y. DC Breakdown Strength and Conduction Current of MgO/LDPE Composite Influenced by Filler Size; Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena; Quebec, QC, Canada. 26–29 October 2008; pp. 722–725. DOI
Zazoum B., Frechette M., David E. LDPE/TiO2 nanocomposites: Effect of poss on structure and dielectric properties. IEEE Trans. Dielectr. Electr. Insul. 2016;3:2505–2507. doi: 10.1109/TDEI.2016.7736806. DOI
Katayama J., Ohki Y., Fuse N., Kozako M., Tanaka T. Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2013;20:157–165. doi: 10.1109/TDEI.2013.6451354. DOI
Kavanagh D.F., Gyftakis K.N., McCulloch M.D. Thermal Degradation Phenomena of Polymer Film on Magnet Wire for Electromagnetic Coils. IEEE Trans. Ind. Appl. 2021;199:458–467. doi: 10.1109/TIA.2020.3040201. DOI
Ramprasad R., Shi N., Tang C. Modeling the physics and chemistry of interfaces in nanodielectrics. In: Nelson J.K., editor. Dielectric Polymer Nanocomposites. Springer; Boston, MA, USA: 2010. pp. 133–161. DOI
Arikan O., Uydur C.H.C., Kumru C.F. Prediction of dielectric parameters of an aged MV cable: A comparison of curve fitting, decision tree and artificial neural network methods. Electr. Power Syst. Res. 2022;208:107892. doi: 10.1016/j.epsr.2022.107892. DOI
Havran P., Cimbala R., Kurimsky J., Dolnik B., Kolcunova I., Medved D., Kiraly J., Kohan V., Sarpataky L. Dielectric Properties of Electrical Insulating Liquids for High Voltage Electric Devices in a Time-Varying Electric Field. Energies. 2022;15:391. doi: 10.3390/en15010391. DOI
Fetouhi L., Petitgas B., Dantras E., Martinez-Vega J. Mechanical, dielectric, and physicochemical properties of impregnating resin based on unsaturated polyesterimides. Eur. Phys. J. Appl. Phys. 2017;80:10901. doi: 10.1051/epjap/2017160451. DOI
Singha S., Thomas J.M. Dielectric Properties of Epoxy Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008;15:12–23. doi: 10.1109/T-DEI.2008.4446732. DOI
Mallakpour S., Behranvand V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett. 2016;10:895–913. doi: 10.3144/expresspolymlett.2016.84. DOI
Kudelcik J., Hardon S., Hockicko P., Kudelcikova M., Hornak J., Prosr P., Trnka P. Study of the Complex Permittivity of a Polyurethane Matrix Modified by Nanoparticles. IEEE Access. 2021;9:49547–49556. doi: 10.1109/ACCESS.2021.3069144. DOI
Michal O., Mentlik V., Hornak J. Impact of ultrasonic mixing on the electrical properties of PEI/SiO2 nanocomposites. AIP Conf. Proc. 2021;2411:050010. doi: 10.1063/5.0066867. DOI
Gornicka B., Prociow E. Polyester and Polyesterimide Compounds with Nanofillers for Impregnating of Electrical Motors. [(accessed on 5 May 2020)];Acta Phys. Pol. 2009 115:842–845. doi: 10.12693/APhysPolA.115.842. Available online: http://przyrbwn.icm.edu.pl/APP/PDF/115/a115z420.pdf. DOI
Gornicka B., Gorecki L., Gryzlo K., Kaczmarek D., Wojcieszak D. Evaluation of Polyesterimide Nanocomposites Using Methods of Thermal Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2016;113:012012. doi: 10.1088/1757-899X/113/1/012012. DOI
Tanaka T., Imai T. Advanced Nanodielectrics (Fundamental and Applications) Pan Stanford Publishing Pte Ltd.; Singapore: 2017. pp. 141–178.
Yegorov A., Bogdanovskaya M., Ivanov V., Kosova O., Tcarkova K., Retivov V., Zhdanovich O. In: Nanocomposite Polyimide Materials. Characterizations of Some Composite Materials. Saleh H.E.M., Koller M., editors. IntechOpen; London, UK: 2019. Chapter 6. DOI
Kudelcik J., Hardon S., Trnka P., Michal O., Hornak J. Dielectric Responses of Polyurethane/Zinc Oxide Blends for Dry-Type Cast Cold-Curing Resin Transformers. Polymers. 2021;13:375. doi: 10.3390/polym13030375. PubMed DOI PMC
Rahman M.M. Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers. 2020;12:1535. doi: 10.3390/polym12071535. PubMed DOI PMC
Zhang S., Zhang D., Bai H., Ming W. ZnO Nanoparticles Coated with Amphiphilic Polyurethane for Transparent Polyurethane Nanocomposites with Enhanced Mechanical and UV Shielding Performance. ACS Appl. Nano Mater. 2020;3:59–67. doi: 10.1021/acsanm.9b01540. DOI
Park J.J. Electrical Properties of Epoxy Composites with Micro-sized Fillers. Trans. Electr. Electron. Mater. 2018;19:475–480. doi: 10.1007/s42341-018-0071-3. DOI
Tang Y., Ge G., Li Y., Huang L. Effect of Al2O3 with Different Nanostructures on the Insulating Properties of Epoxy-Based Composites. Materials. 2020;13:4235. doi: 10.3390/ma13194235. PubMed DOI PMC
Eker Y.R., Özcan M., Ozcan A., Kirkici H. The inuence of Al2O3 and TiO2 additives on the electrical resistivity of epoxy resin based composites at low temperature. Macromol. Mater. Eng. 2019;304:1800670. doi: 10.1002/mame.201800670. DOI
Wang X., Chen Q., Yang H., Zhou K., Ning X. Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci. Mater. Electron. 2018;29:12765–12770. doi: 10.1007/s10854-018-9394-4. DOI
Soulintzis A., Kontos G., Karahaliou P., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric relaxation processes in epoxy resin—ZnO composites. J. Polym. Sci. B Polym. Phys. 2009;47:445–454. doi: 10.1002/polb.21649. DOI
Kudelcik J., Jahoda E., Hornak J., Michal O., Trnka P. Partial discharges and dielectric parameters of epoxy resin filled with nanoparticles; Proceedings of the 19th International Scientific Conference on Electric Power Engineering (EPE); Brno, Czech Republic. 16–18 May 2018; pp. 1–6. DOI
Shi H., Gao N., Jin H., Zhang G., Peng Z. Investigation of the effects of nano-filler on dielectric properties of epoxy based composites; Proceedings of the IEEE 9th International Conference on the Properties and Applications of Dielectric Materials; Harbin, China. 19–23 July 2009; pp. 804–807. DOI
Klampar M., Liedermann K. Dielectric relaxation spectroscopy of epoxy resins with TiO2, Al2O3, WO3 and SiO2 nanofillers; Proceedings of the IEEE International Symposium on Electrical Insulation; San Juan, PR, USA. 10–13 June 2012; pp. 637–640. DOI
Hornak J., Trnka P., Kadlec P., Michal O., Mentlík V., Šutta P., Csanyi G.M., Tamus Z.A. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials. 2018;8:381. doi: 10.3390/nano8060381. PubMed DOI PMC
ELAN-Protect_UP_343. [(accessed on 5 May 2020)]. Available online: https://products.elantas.com/beckinsulation/productReport/ELAN-protect%C2%AE_UP_343.pdf?language=en&country=&download=productReport&productid=00000300&brandid=66958.
NanoAmor, Amorphous Products—Zinc Oxide Nanopowder. [(accessed on 5 May 2020)]. Available online: https://www.nanoamor.com/inc/sdetail/19983.
NanoAmor, Amorphous Products—Aluminum Oxide (Al2O3) Nanopowder. [(accessed on 5 May 2020)]. Available online: https://www.nanoamor.com/inc/sdetail/23066.
Patel S., Sengupta R., Puntambekar U., Shingne N. Effect of different types of silica particles on dielectric and mechanical properties of epoxy nanocomposites. Mater. Today Proc. 2021;44:1848–1852. doi: 10.1016/j.matpr.2020.12.014. DOI
Zhong X., Wu G., Yang Y., Wu X., Lei Y. Effects of nanoparticles on reducing partial discharge induced degradation of polyimide/Al2O3 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018;25:594–602. doi: 10.1109/TDEI.2018.006807. DOI
Alam T.M., Allers J.P., Jones B.H. Heterogeneous Polymer Dynamics Explored Using Static 1H NMR Spectra. Int. J. Mol. Sci. 2020;21:5176. doi: 10.3390/ijms21155176. PubMed DOI PMC
Uthaman A., Xian G., Thomas S., Wang Y., Zheng Q., Liu X. Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions. Polymers. 2020;12:614. doi: 10.3390/polym12030614. PubMed DOI PMC
Liu S., Zhang H., Zhang Z., Sprenger S. Epoxy Resin Filled with High Volume Content Nano-SiO2 Particles. J. Nanosci. Nanotechnol. 2009;9:1412–1417. doi: 10.1166/jnn.2009.C168. PubMed DOI
Krishnakumar B., Prasanna Sanka R.V.S., Binder W.H., Park C., Jung J., Parthasarthy V., Rana S., Yun G.J. Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Compos. Part B Eng. 2019;184:107647. doi: 10.1016/j.compositesb.2019.107647. DOI
Barabanova A.I., Afanas’ev E.S., Molchanov V.S., Askadskii A.A., Philippova O.E. Unmodified Silica Nanoparticles Enhance Mechanical Properties and Welding Ability of Epoxy Thermosets with Tunable Vitrimer Matrix. Polymers. 2021;13:3040. doi: 10.3390/polym13183040. PubMed DOI PMC
Jena K.K., Chattopadhyay D.K., Raju K.V.S.N. Synthesis and characterization of hyperbranched polyurethane–urea coatings. Eur. Polym. J. 2007;45:1825–1837. doi: 10.1016/j.eurpolymj.2007.02.042. DOI
Raihan R., Rabbi F., Vadlamudi V., Reifsnider K. Composite materials damage modeling based on dielectric properties. Mater. Sci. Appl. 2015;6:1033–1053. doi: 10.4236/msa.2015.611103. DOI
Jonscher A.K. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999;32:R57–R70. doi: 10.1088/0022-3727/32/14/201. DOI
Tomara G.N., Kerasidou A.P., Patsidis A.C., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric response and energy storage efficiency of low content TiO2-polymer matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015;71:204–211. doi: 10.1016/j.compositesa.2015.01.017. DOI
Kontos G.A., Soulintzis A.L., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A., Pisanias M.N. Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym. Lett. 2007;1:781–789. doi: 10.3144/expresspolymlett.2007.108. DOI
Jahoda E., Kúdelčík J., Hornak J., Trnka P. The influence of nanoparticles in the epoxy resin on dielectric parameters and partial discharges; Proceedings of the 2018 ELEKTRO; Mikulov, Czech Republic. 21–23 May 2018; pp. 1–5. DOI
Ahmad Y. Polymer dielectric materials. In: Silaghi M.A., editor. Dielectric Material. IntechOpen; London, UK: 2011. DOI
Zhao W., Fan Y., Chen H. Dielectric properties and corona resistance of Si-B/epoxy nano-composites. J. Mater. Sci. Mater. Electron. 2019;30:16298–16307. doi: 10.1007/s10854-019-02000-w. DOI
Sun X.W., Yang Y. Introduction. In: Sun X.W., Yang Y., editors. ZnO Nanostructures and Their Applications. Taylor& Francis Group; New York, NY, USA: 2012. pp. 1–14.
Yilgor I., Yilgor E., Guler I.G., Ward T.C., Wilkes G.L. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer. 2006;47:4105–4114. doi: 10.1016/j.polymer.2006.02.027. DOI
Velayutham T.S., Majid W.H.A., Gan W.C., Zak A.K., Gan S.N. Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J. Appl. Phys. 2012;112:054106. doi: 10.1063/1.4749414. DOI
Domun N., Paton K.R., Hadavinia H., Sainsbury T., Zhang T., Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials. 2017;10:1179. doi: 10.3390/ma10101179. PubMed DOI PMC
Tanaka T., Montanari G.C., Malhaupt R. Process, understanding and challenges in the field of nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004;11:763–784. doi: 10.1109/TDEI.2004.1349782. DOI
Luo Y., Wu G.N., Liu J.W., Peng J., Zhu G.Y., Gao G. Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2014;21:1824–1834. doi: 10.1109/TDEI.2014.004305. DOI
Rittigstein P., Torkelson J.M. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 2006;44:293–2943. doi: 10.1002/polb.20925. DOI