Dielectric Responses of Polyurethane/Zinc Oxide Blends for Dry-Type Cast Cold-Curing Resin Transformers

. 2021 Jan 26 ; 13 (3) : . [epub] 20210126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33530356

Grantová podpora
ID 52010598 Visegrad Scholarship Program
ID 22010345 Visegrad Strategic Grants
7965 Grant System of University of Zilina No. 1/2020
SGS-2018-016 Student Grant Agency of the University of West Bohemia in Pilsen
CZ.02.1.01/0.0/0.0/18_069/0009855 Ministry of Education, Youth and Sports of the Czech Republic under the project OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence

The influence of different concentrations (0.5, 1.0, and 2.0 wt.%) of Zinc Oxide (ZnO) filler on the dielectric properties of the cold-curing polyurethane (PU) resin is presented in this study. For this purpose, the direct DC conductivity and the broadband dielectric spectroscopy measurements were used to describe the changes in dielectric responses of PU/ZnO nanocomposites over the frequency and temperature range, respectively. It can be stated that, the 1.0 wt.% nanoparticles and lower caused a decrease in the real relative permittivity compared to the pure PU resin, while the higher concentration of nanoparticles for frequencies above 1 Hz had the opposite effect. The presence of nanoparticles in the polyurethane resin affected the segmental dynamics of the polymer chain and changed a charge distribution in the given system. These changes caused a shift of local relaxation peaks in the spectra of imaginary permittivity and dissipation factor of nanocomposites. It is suggested that the temperature-dependent transition of the electric properties in the nano-composite is closely associated with the α-relaxation and intermediate dipolar effects (IDE).

Zobrazit více v PubMed

Tang S., Hale C., Thaker H. Reliability modeling of power transformers with maintenance outage. Syst. Sci. Control. Eng. 2014;2:316–324. doi: 10.1080/21642583.2014.901930. DOI

Bartley W.H. Investigating transformer failure; Proceedings of the Weidmann-ACTI 5th Annual Technical Conference on New Diagnostic Concepts for Better Asset Management; Albuquerque, NM, USA. 13–15 November 2006.

Chiesa M., Das S.K. Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media. Colloids Surf. 2009;335:88–97. doi: 10.1016/j.colsurfa.2008.10.044. DOI

Rajnak M., Timko M., Kopcansky P., Paulovicova K., Kuchta J., Franko M., Kurimsky J., Dolnik B., Cimbala R. Transformer oil-based magnetic nanofluid with high dielectric losses tested for cooling of a model transformer. IEEE Trans. Dielectr. Electr. Insul. 2019;26:1343–1349. doi: 10.1109/TDEI.2019.008047. DOI

Rafiq M., Yuzhen L., Chengrong L. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016;2016:8371560. doi: 10.1155/2016/8371560. DOI

Saha T.K., Purkait P. Monitoring and Estimation Techniques. In: Saha T.K., Purkait P., editors. Transformer Ageing. JohnWiley & Sons Singapore Pte. Ltd.; Hoboken, NJ, USA: 2017. pp. 1–35.

Wu W., Kern J.A. Temperature rise prediction of a natural cooling dry-type transformer; Proceedings of the SoutheastCon 2016; Norfolk, VA, USA. 30 March–3 April 2016.

Ding X., Ning W. Analysis of the Dry-type Transformer Temperature Field Based on Fluid-solid Coupling; Proceedings of the Second International Conference on Instrumentation, Measurement, Computer, Communication and Control; Harbin, China. 8–10 December 2012; pp. 520–523.

Mafra R., Magalhães E., Anselmo B., Belchior F., Lima e Silva S. Winding Hottest-Spot Temperature Analysis in Dry-Type Transformer Using Numerical Simulation. Energies. 2018;12:68. doi: 10.3390/en12010068. DOI

Pierce L.W. Thermal considerations in specifying dry-type transformers. IEEE Trans. Ind. Appl. 1994;30:1090–1098. doi: 10.1109/28.297927. DOI

Kumar S.K., Benicewicz B.C., Vaia R.A., Winey K.I. 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications. Macromolecules. 2017;50:714–731. doi: 10.1021/acs.macromol.6b02330. DOI

Kim M.I., Kim S., Kim T., Lee D.K., Seo B., Lim C.-S. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings. 2017;7:231. PubMed

Domun N., Paton K.R., Hadavinia H., Sainsbury T., Zhang T., Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials. 2017;10:1179. doi: 10.3390/ma10101179. PubMed DOI PMC

Zhang X., Wen H., Wu Y. Computational thermomechanical properties of silica–epoxy nanocomposites by molecular dynamic simulation. Polymers. 2017;9:430. doi: 10.3390/polym9090430. PubMed DOI PMC

Kochetov R. Ph.D. Thesis. Wöhrmann Print Service; Zutphen, The Netherlands: 2012. Thermal and Electrical Properties of Nanocomposites, Including Material Processing; pp. 16–27.

Singha S., Thomas J.M. Dielectric Properties of Epoxy Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008;15:12–23. doi: 10.1109/T-DEI.2008.4446732. DOI

Roy M., Nelson J.K., MacCrone R.K., Schadler L.S., Reed C.W., Keefe R., Zenger W. Polymer Nanocomposite Dielectrics–The Role of the Interface. IEEE Trans. Dielectr. Electr. Insul. 2005;12:629–643. doi: 10.1109/TDEI.2005.1511089. DOI

Tanaka T., Montanari G.C., Malhaupt R. Process, understanding and challenges in the field of nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004;11:763–784. doi: 10.1109/TDEI.2004.1349782. DOI

Tanaka T., Kozako M., Fuse N., Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005;12:669–681. doi: 10.1109/TDEI.2005.1511092. DOI

Pissis P. Thermoset Nanocomposites for Engineering Application. Smithers Rapra Technology Ltd.; Shawbury, UK: 2007. Molecular Dynamics of Thermoset Nanocomposites; pp. 143–206.

Siyanbola T.O., Sasidhar K., Rao B.V.S.K., Narayan R., Olaofe O., Akintayo E.T., Raju K.V.S.N. Development of Functional Polyurethane–ZnO Hybrid Nanocomposite Coatings from Thevetia peruviana Seed Oil. J. Am. Oil Chem. Soc. 2015;92:267–275. doi: 10.1007/s11746-014-2587-y. DOI

Wang H., Qiu X., Liu W., Fu F., Yang D. A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating. Ind. Eng. Chem. Res. 2017;56:11133–11141. doi: 10.1021/acs.iecr.7b02425. DOI

Soltani B., Asghari M. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane. Membranes. 2017;7:43. doi: 10.3390/membranes7030043. PubMed DOI PMC

El Mogy S.A., Youssef R.S., Abd El Megeed A.A. Processing of Polyurethane Nanocomposite Reinforced with nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egypt J. Chem. 2019;62:333–341. doi: 10.21608/ejchem.2018.4655.1410. DOI

Preety, Hooda V. A novel polyurethane/nano ZnO matrix for immobilization of chitinolytic enzymes and optical sensing of chitin. Egypt J. Chem. 2018;106:1173–1183. PubMed

Velayutham T.S., Abd Majid W.H., Gan W.C., Khorsand Zak A., Gan S.N. Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J. Appl. Phys. 2012;112:054106. doi: 10.1063/1.4749414. DOI

Soulintzis A., Kontos G., Karahaliou P., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric relaxation processes in epoxy resin—ZnO composites. J. Polym. Sci. B Polym. Phys. 2009;47:445–454. doi: 10.1002/polb.21649. DOI

Hernandez M., Ezquerra T.A., Verdejo R., Lopez-Manchado M.A. Role of vulcanizing additives on the segmental dynamics of natural rubber. Macromolecules. 2012;45:1070–1075. doi: 10.1021/ma202325k. DOI

Kontos G.A., Soulintzis A.L., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A., Pisanias M.N. Electrical relaxation dynamics in TiO2-polymer matrix composites. EXPRESS Polym. Lett. 2007;1:781–789. doi: 10.3144/expresspolymlett.2007.108. DOI

Ramajo L.A., Cristóbal A.A., Botta P.M., Porto López J.M., Reboredo M.M., Castro M.S. Dielectric and magnetic response of Fe3O4/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2009;40:388–393. doi: 10.1016/j.compositesa.2008.12.017. DOI

Polyurethanes . In: Meyler’s Side Effects of Drugs. Aronson J.K., editor. Elsevier; Amsterdam, The Netherlands: 2016. p. 874.

Vahabi H., Rastin H., Movahedifar E., Antoun K., Brosse N., Saeb M.R. Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers. 2020;12:1234. doi: 10.3390/polym12061234. PubMed DOI PMC

Fricova O., Hutnikova M., Kovalakova M., Baran A. Influence of aging on molecular motion in PBAT-thermoplastic starch blends studied using solid-state NMR. Int. J. Polym. Anal. Charact. 2020;25:275–282. doi: 10.1080/1023666X.2020.1783495. DOI

Knibbe D.E. A Chemical and Physical Comparison of Polyurethane Hot Cure and Cold Cure Moulding. J. Cell. Plast. 1985;21:264–268. doi: 10.1177/0021955X8502100407. DOI

Montesano L. Room Temperature-Curing Polyurethane Casting Compounds. Ind. Eng. Chem. Prod. Res. Dev. 1964;3:133–137. doi: 10.1021/i360010a015. DOI

VUKI a.s. VUKOL O22, Material Safety Data Sheet According to Regulation (EC) No 1907/2006. VUKI a.s.; Bratislava, Slovakia: 2018.

VUKI a.s. VUKIL M, Material Safety Data Sheet According to Regulation (EC) No 1907/2006 and Modified According to 2015/830/EU. VUKI a.s.; Bratislava, Slovakia: 2020.

VUKI a.s. Impregnants, VUKUR OM 22, Material Data Sheet. VUKI a.s.; Bratislava, Slovakia: 2013.

Wang Z.L. Nanostructures of zinc oxide. Mater. Today. 2004;7:26–33. doi: 10.1016/S1369-7021(04)00286-X. DOI

Galdámez-Martinez A., Santana G., Güell F., Martínez-Alanis P.R., Dutt A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials. 2020;10:857. doi: 10.3390/nano10050857. PubMed DOI PMC

Wang J., Chen R., Xiang L., Komarneni S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018;44:7357–7377. doi: 10.1016/j.ceramint.2018.02.013. DOI

Abbas Shah N., Gul M., Abbas M., Amin M. Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. In: Khan S.H., editor. Gas Sensors. IntechOpen Limited; London, UK: 2020. pp. 1–23.

Hahn Y.-B. Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 2011;28:1797–1813. doi: 10.1007/s11814-011-0213-3. DOI

Janotti A., Van de Walle C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI

Nanostructured & Amorphous Materials, Inc. Zirconia Nanopowder, Calcia Doped (ZrO2/8 mol%CaO, 99.9%, 20–30 nm) [(accessed on 10 October 2020)]; Available online: https://www.nanoamor.com/inc/sdetail/3261.

Rahman M.M. Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers. 2020;12:1535. doi: 10.3390/polym12071535. PubMed DOI PMC

González-Irún Rodríguez J., Carreira P., García-Diez A., Hui D., Artiaga R., Liz-Marzán L.M. Nanofiller effect on the glass transition of a polyurethane. J. Therm. Anal. Calorim. 2007;87:45–47. doi: 10.1007/s10973-006-7805-x. DOI

Rittigstein P., Torkelson J.M. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 2006;44:2935–2943. doi: 10.1002/polb.20925. DOI

Barrau S., Demont P., Maraval C., Bernes A., Lacabanne C. Glass Transition Temperature Depression at the Percolation Threshold in Carbon Nanotube–Epoxy Resin and Polypyrrole–Epoxy Resin Composites. Macromol. Rapid Commun. 2005;25:390–394. doi: 10.1002/marc.200400515. DOI

Stanzione M., Russo V., Oliviero M., Verdolotti L., Sorrentino A., Di Serio M., Tesser R., Iannace S., Lavorgna M. Characterization of sustainable polyhydroxyls, produced from bio-based feedstock, and polyurethane and copolymer urethane-amide foams. J. Data Brief. 2018;21:269–275. doi: 10.1016/j.dib.2018.09.077. PubMed DOI PMC

Kao K.C. Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; Amsterdam, The Netherlands: 2004.

Kremer F., Schönhals A., editors. Broadband Dielectric Spectroscopy. Springer; Heidelberg, Germany: 2003.

Maity P., Poovamma P.K., Basu S., Parameswaran V., Gupta N. Dielectric spectroscopy of epoxy resin with and without nanometric alumina fillers. IEEE Trans. Dielectr. Electr. Insul. 2009;16:1481–1488. doi: 10.1109/TDEI.2009.5293963. DOI

Hardon S., Kudelcik J., Trnka P., Totzauer P., Hornak J., Michal O. The influence of ZnO nanoparticles on the dielectric properties of epoxy resin; Proceedings of the Applied Physics of Condensed Matter (APCOM 2019); Strbske Pleso, Slovakia. 19–21 June 2019; p. 020015.

Wang X., Chen Q., Yang H., Zhou K., Ning X. Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci. Mater. Electron. 2018;29:12765–12770. doi: 10.1007/s10854-018-9394-4. DOI

Tomara G.N., Kerasidou A.P., Patsidis A.C., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric response and energy storage efficiency of low content TiO2-polymer matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015;71:204–211. doi: 10.1016/j.compositesa.2015.01.017. DOI

Wang Z., Zhou W., Dong L., Sui X., Zuo J., Cai H., Cai J. Dielectric relaxation dynamics of Al/epoxy micro-composites. J. Alloys Compd. 2016;689:342–349. doi: 10.1016/j.jallcom.2016.07.332. DOI

Zhao W., Fan Y., Chen H. Dielectric properties and corona resistance of Si-B/epoxy nano-composites. J. Mater. Sci. Mater. Electron. 2019;30:16298–16307. doi: 10.1007/s10854-019-02000-w. DOI

Sun X.W., Yang Y. Introduction. In: Sun X.W., Yang Y., editors. ZnO Nanostructures and Their Applications. Taylor & Francis Group; New York, NY, USA: 2012. pp. 1–14.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...