Dielectric Responses of Polyurethane/Zinc Oxide Blends for Dry-Type Cast Cold-Curing Resin Transformers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ID 52010598
Visegrad Scholarship Program
ID 22010345
Visegrad Strategic Grants
7965
Grant System of University of Zilina No. 1/2020
SGS-2018-016
Student Grant Agency of the University of West Bohemia in Pilsen
CZ.02.1.01/0.0/0.0/18_069/0009855
Ministry of Education, Youth and Sports of the Czech Republic under the project OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence
PubMed
33530356
PubMed Central
PMC7866048
DOI
10.3390/polym13030375
PII: polym13030375
Knihovny.cz E-zdroje
- Klíčová slova
- broadband dielectric spectroscopy, cold-curing, nanocomposites, dielectric relaxation, dry-type transformers, polyurethane, zinc oxide,
- Publikační typ
- časopisecké články MeSH
The influence of different concentrations (0.5, 1.0, and 2.0 wt.%) of Zinc Oxide (ZnO) filler on the dielectric properties of the cold-curing polyurethane (PU) resin is presented in this study. For this purpose, the direct DC conductivity and the broadband dielectric spectroscopy measurements were used to describe the changes in dielectric responses of PU/ZnO nanocomposites over the frequency and temperature range, respectively. It can be stated that, the 1.0 wt.% nanoparticles and lower caused a decrease in the real relative permittivity compared to the pure PU resin, while the higher concentration of nanoparticles for frequencies above 1 Hz had the opposite effect. The presence of nanoparticles in the polyurethane resin affected the segmental dynamics of the polymer chain and changed a charge distribution in the given system. These changes caused a shift of local relaxation peaks in the spectra of imaginary permittivity and dissipation factor of nanocomposites. It is suggested that the temperature-dependent transition of the electric properties in the nano-composite is closely associated with the α-relaxation and intermediate dipolar effects (IDE).
Zobrazit více v PubMed
Tang S., Hale C., Thaker H. Reliability modeling of power transformers with maintenance outage. Syst. Sci. Control. Eng. 2014;2:316–324. doi: 10.1080/21642583.2014.901930. DOI
Bartley W.H. Investigating transformer failure; Proceedings of the Weidmann-ACTI 5th Annual Technical Conference on New Diagnostic Concepts for Better Asset Management; Albuquerque, NM, USA. 13–15 November 2006.
Chiesa M., Das S.K. Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media. Colloids Surf. 2009;335:88–97. doi: 10.1016/j.colsurfa.2008.10.044. DOI
Rajnak M., Timko M., Kopcansky P., Paulovicova K., Kuchta J., Franko M., Kurimsky J., Dolnik B., Cimbala R. Transformer oil-based magnetic nanofluid with high dielectric losses tested for cooling of a model transformer. IEEE Trans. Dielectr. Electr. Insul. 2019;26:1343–1349. doi: 10.1109/TDEI.2019.008047. DOI
Rafiq M., Yuzhen L., Chengrong L. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016;2016:8371560. doi: 10.1155/2016/8371560. DOI
Saha T.K., Purkait P. Monitoring and Estimation Techniques. In: Saha T.K., Purkait P., editors. Transformer Ageing. JohnWiley & Sons Singapore Pte. Ltd.; Hoboken, NJ, USA: 2017. pp. 1–35.
Wu W., Kern J.A. Temperature rise prediction of a natural cooling dry-type transformer; Proceedings of the SoutheastCon 2016; Norfolk, VA, USA. 30 March–3 April 2016.
Ding X., Ning W. Analysis of the Dry-type Transformer Temperature Field Based on Fluid-solid Coupling; Proceedings of the Second International Conference on Instrumentation, Measurement, Computer, Communication and Control; Harbin, China. 8–10 December 2012; pp. 520–523.
Mafra R., Magalhães E., Anselmo B., Belchior F., Lima e Silva S. Winding Hottest-Spot Temperature Analysis in Dry-Type Transformer Using Numerical Simulation. Energies. 2018;12:68. doi: 10.3390/en12010068. DOI
Pierce L.W. Thermal considerations in specifying dry-type transformers. IEEE Trans. Ind. Appl. 1994;30:1090–1098. doi: 10.1109/28.297927. DOI
Kumar S.K., Benicewicz B.C., Vaia R.A., Winey K.I. 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications. Macromolecules. 2017;50:714–731. doi: 10.1021/acs.macromol.6b02330. DOI
Kim M.I., Kim S., Kim T., Lee D.K., Seo B., Lim C.-S. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings. 2017;7:231. PubMed
Domun N., Paton K.R., Hadavinia H., Sainsbury T., Zhang T., Mohamud H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials. 2017;10:1179. doi: 10.3390/ma10101179. PubMed DOI PMC
Zhang X., Wen H., Wu Y. Computational thermomechanical properties of silica–epoxy nanocomposites by molecular dynamic simulation. Polymers. 2017;9:430. doi: 10.3390/polym9090430. PubMed DOI PMC
Kochetov R. Ph.D. Thesis. Wöhrmann Print Service; Zutphen, The Netherlands: 2012. Thermal and Electrical Properties of Nanocomposites, Including Material Processing; pp. 16–27.
Singha S., Thomas J.M. Dielectric Properties of Epoxy Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008;15:12–23. doi: 10.1109/T-DEI.2008.4446732. DOI
Roy M., Nelson J.K., MacCrone R.K., Schadler L.S., Reed C.W., Keefe R., Zenger W. Polymer Nanocomposite Dielectrics–The Role of the Interface. IEEE Trans. Dielectr. Electr. Insul. 2005;12:629–643. doi: 10.1109/TDEI.2005.1511089. DOI
Tanaka T., Montanari G.C., Malhaupt R. Process, understanding and challenges in the field of nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2004;11:763–784. doi: 10.1109/TDEI.2004.1349782. DOI
Tanaka T., Kozako M., Fuse N., Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005;12:669–681. doi: 10.1109/TDEI.2005.1511092. DOI
Pissis P. Thermoset Nanocomposites for Engineering Application. Smithers Rapra Technology Ltd.; Shawbury, UK: 2007. Molecular Dynamics of Thermoset Nanocomposites; pp. 143–206.
Siyanbola T.O., Sasidhar K., Rao B.V.S.K., Narayan R., Olaofe O., Akintayo E.T., Raju K.V.S.N. Development of Functional Polyurethane–ZnO Hybrid Nanocomposite Coatings from Thevetia peruviana Seed Oil. J. Am. Oil Chem. Soc. 2015;92:267–275. doi: 10.1007/s11746-014-2587-y. DOI
Wang H., Qiu X., Liu W., Fu F., Yang D. A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating. Ind. Eng. Chem. Res. 2017;56:11133–11141. doi: 10.1021/acs.iecr.7b02425. DOI
Soltani B., Asghari M. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane. Membranes. 2017;7:43. doi: 10.3390/membranes7030043. PubMed DOI PMC
El Mogy S.A., Youssef R.S., Abd El Megeed A.A. Processing of Polyurethane Nanocomposite Reinforced with nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egypt J. Chem. 2019;62:333–341. doi: 10.21608/ejchem.2018.4655.1410. DOI
Preety, Hooda V. A novel polyurethane/nano ZnO matrix for immobilization of chitinolytic enzymes and optical sensing of chitin. Egypt J. Chem. 2018;106:1173–1183. PubMed
Velayutham T.S., Abd Majid W.H., Gan W.C., Khorsand Zak A., Gan S.N. Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J. Appl. Phys. 2012;112:054106. doi: 10.1063/1.4749414. DOI
Soulintzis A., Kontos G., Karahaliou P., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric relaxation processes in epoxy resin—ZnO composites. J. Polym. Sci. B Polym. Phys. 2009;47:445–454. doi: 10.1002/polb.21649. DOI
Hernandez M., Ezquerra T.A., Verdejo R., Lopez-Manchado M.A. Role of vulcanizing additives on the segmental dynamics of natural rubber. Macromolecules. 2012;45:1070–1075. doi: 10.1021/ma202325k. DOI
Kontos G.A., Soulintzis A.L., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A., Pisanias M.N. Electrical relaxation dynamics in TiO2-polymer matrix composites. EXPRESS Polym. Lett. 2007;1:781–789. doi: 10.3144/expresspolymlett.2007.108. DOI
Ramajo L.A., Cristóbal A.A., Botta P.M., Porto López J.M., Reboredo M.M., Castro M.S. Dielectric and magnetic response of Fe3O4/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2009;40:388–393. doi: 10.1016/j.compositesa.2008.12.017. DOI
Polyurethanes . In: Meyler’s Side Effects of Drugs. Aronson J.K., editor. Elsevier; Amsterdam, The Netherlands: 2016. p. 874.
Vahabi H., Rastin H., Movahedifar E., Antoun K., Brosse N., Saeb M.R. Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers. 2020;12:1234. doi: 10.3390/polym12061234. PubMed DOI PMC
Fricova O., Hutnikova M., Kovalakova M., Baran A. Influence of aging on molecular motion in PBAT-thermoplastic starch blends studied using solid-state NMR. Int. J. Polym. Anal. Charact. 2020;25:275–282. doi: 10.1080/1023666X.2020.1783495. DOI
Knibbe D.E. A Chemical and Physical Comparison of Polyurethane Hot Cure and Cold Cure Moulding. J. Cell. Plast. 1985;21:264–268. doi: 10.1177/0021955X8502100407. DOI
Montesano L. Room Temperature-Curing Polyurethane Casting Compounds. Ind. Eng. Chem. Prod. Res. Dev. 1964;3:133–137. doi: 10.1021/i360010a015. DOI
VUKI a.s. VUKOL O22, Material Safety Data Sheet According to Regulation (EC) No 1907/2006. VUKI a.s.; Bratislava, Slovakia: 2018.
VUKI a.s. VUKIL M, Material Safety Data Sheet According to Regulation (EC) No 1907/2006 and Modified According to 2015/830/EU. VUKI a.s.; Bratislava, Slovakia: 2020.
VUKI a.s. Impregnants, VUKUR OM 22, Material Data Sheet. VUKI a.s.; Bratislava, Slovakia: 2013.
Wang Z.L. Nanostructures of zinc oxide. Mater. Today. 2004;7:26–33. doi: 10.1016/S1369-7021(04)00286-X. DOI
Galdámez-Martinez A., Santana G., Güell F., Martínez-Alanis P.R., Dutt A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials. 2020;10:857. doi: 10.3390/nano10050857. PubMed DOI PMC
Wang J., Chen R., Xiang L., Komarneni S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018;44:7357–7377. doi: 10.1016/j.ceramint.2018.02.013. DOI
Abbas Shah N., Gul M., Abbas M., Amin M. Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. In: Khan S.H., editor. Gas Sensors. IntechOpen Limited; London, UK: 2020. pp. 1–23.
Hahn Y.-B. Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 2011;28:1797–1813. doi: 10.1007/s11814-011-0213-3. DOI
Janotti A., Van de Walle C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI
Nanostructured & Amorphous Materials, Inc. Zirconia Nanopowder, Calcia Doped (ZrO2/8 mol%CaO, 99.9%, 20–30 nm) [(accessed on 10 October 2020)]; Available online: https://www.nanoamor.com/inc/sdetail/3261.
Rahman M.M. Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers. 2020;12:1535. doi: 10.3390/polym12071535. PubMed DOI PMC
González-Irún Rodríguez J., Carreira P., García-Diez A., Hui D., Artiaga R., Liz-Marzán L.M. Nanofiller effect on the glass transition of a polyurethane. J. Therm. Anal. Calorim. 2007;87:45–47. doi: 10.1007/s10973-006-7805-x. DOI
Rittigstein P., Torkelson J.M. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 2006;44:2935–2943. doi: 10.1002/polb.20925. DOI
Barrau S., Demont P., Maraval C., Bernes A., Lacabanne C. Glass Transition Temperature Depression at the Percolation Threshold in Carbon Nanotube–Epoxy Resin and Polypyrrole–Epoxy Resin Composites. Macromol. Rapid Commun. 2005;25:390–394. doi: 10.1002/marc.200400515. DOI
Stanzione M., Russo V., Oliviero M., Verdolotti L., Sorrentino A., Di Serio M., Tesser R., Iannace S., Lavorgna M. Characterization of sustainable polyhydroxyls, produced from bio-based feedstock, and polyurethane and copolymer urethane-amide foams. J. Data Brief. 2018;21:269–275. doi: 10.1016/j.dib.2018.09.077. PubMed DOI PMC
Kao K.C. Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; Amsterdam, The Netherlands: 2004.
Kremer F., Schönhals A., editors. Broadband Dielectric Spectroscopy. Springer; Heidelberg, Germany: 2003.
Maity P., Poovamma P.K., Basu S., Parameswaran V., Gupta N. Dielectric spectroscopy of epoxy resin with and without nanometric alumina fillers. IEEE Trans. Dielectr. Electr. Insul. 2009;16:1481–1488. doi: 10.1109/TDEI.2009.5293963. DOI
Hardon S., Kudelcik J., Trnka P., Totzauer P., Hornak J., Michal O. The influence of ZnO nanoparticles on the dielectric properties of epoxy resin; Proceedings of the Applied Physics of Condensed Matter (APCOM 2019); Strbske Pleso, Slovakia. 19–21 June 2019; p. 020015.
Wang X., Chen Q., Yang H., Zhou K., Ning X. Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci. Mater. Electron. 2018;29:12765–12770. doi: 10.1007/s10854-018-9394-4. DOI
Tomara G.N., Kerasidou A.P., Patsidis A.C., Karahaliou P.K., Psarras G.C., Georga S.N., Krontiras C.A. Dielectric response and energy storage efficiency of low content TiO2-polymer matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015;71:204–211. doi: 10.1016/j.compositesa.2015.01.017. DOI
Wang Z., Zhou W., Dong L., Sui X., Zuo J., Cai H., Cai J. Dielectric relaxation dynamics of Al/epoxy micro-composites. J. Alloys Compd. 2016;689:342–349. doi: 10.1016/j.jallcom.2016.07.332. DOI
Zhao W., Fan Y., Chen H. Dielectric properties and corona resistance of Si-B/epoxy nano-composites. J. Mater. Sci. Mater. Electron. 2019;30:16298–16307. doi: 10.1007/s10854-019-02000-w. DOI
Sun X.W., Yang Y. Introduction. In: Sun X.W., Yang Y., editors. ZnO Nanostructures and Their Applications. Taylor & Francis Group; New York, NY, USA: 2012. pp. 1–14.