A Comprehensive Study of Polyurethane Potting Compounds Doped with Magnesium Oxide Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2021-003
Student Grant Agency of the University of West Bohemia in Pilsen
APVV-21-0078
Slovak Research and Development Agency
APVV-21-0449
Slovak Research and Development Agency
1/2022 (17292)
Grant System of the University of Zilina
PubMed
36987311
PubMed Central
PMC10059885
DOI
10.3390/polym15061532
PII: polym15061532
Knihovny.cz E-zdroje
- Klíčová slova
- broadband dielectric spectroscopy, dielectric relaxation, magnesium oxide, nanocomposites, nuclear magnetic resonance, polyurethane, tensile strength,
- Publikační typ
- časopisecké články MeSH
Recently, polyurethanes (PURs) have become a very promising group of materials with considerable utilization and innovation potential. This work presents a comprehensive analysis of the changes in material properties important for PUR applications in the electrical industry due to the incorporation of magnesium oxide (MgO) nanoparticles at different weight ratios. From the results of the investigations carried out, it is evident that the incorporation of MgO improves the volume (by up to +0.5 order of magnitude) and surface (+1 order of magnitude) resistivities, reduces the dielectric losses at higher temperatures (-62%), improves the thermal stability of the material, and slows the decomposition reaction of polyurethane at specific temperatures (+30 °C). In contrast, the incorporation of MgO results in a slight decrease in the dielectric strength (-15%) and a significant decrease in the mechanical strength (-37%).
Zobrazit více v PubMed
Szycher M. Szycher’S Handbook of Polyurethanes. CRC Press Taylor & Francis Group; Boca Raton, FL, USA: 2013. Polyurethanes; pp. 1–12.
Volkova E.R., Tereshatov V.V., Karmanov V.I., Makarova M.A., Slobodinyuk A.I. Polyurethane adhesive composition cured at room temperature. Polym. Sci. Ser. D. 2013;6:120–124. doi: 10.1134/S1995421213020159. DOI
Liu S.H., Shen M.Y., Kuan C.F., Kuan H.C., Ke C.Y., Chiang C.L. Improving Thermal Stability of Polyurethane through the Addition of Hyperbranched Polysiloxane. Polymers. 2019;11:697. doi: 10.3390/polym11040697. PubMed DOI PMC
Pagacz J., Hebda E., Janowski B., Sternik D., Jancia M., Pielichowski K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym. Degrad. Stab. 2018;149:129–142. doi: 10.1016/j.polymdegradstab.2018.01.028. DOI
Amado J.C.Q. Thermal Resistance Properties of Polyurethanes and Its Composites. In: Evingür G.A., Pekcan Ö., Achilias D.S., editors. Thermosoftening Plastics. IntechOpen; London, UK: 2019. DOI
Gaboriaud F., Vantelon J.P. Mechanism of thermal degradation of polyurethane based on MDI and propoxylated trimethylol propane. J. Polym. Sci. Polym. Chem. Ed. 1982;20:2063–2071. doi: 10.1002/pol.1982.170200809. DOI
Kumagai S., Motokucho S., Yabuki R., Anzai A., Kameda T., Watanabe A., Nakatani H., Yoshioka T. Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane. JAAP. 2017;126:337–345. doi: 10.1016/j.jaap.2017.05.012. DOI
Bugrov A.N., Gorshkova Y.E., Ivan’kova E.M., Kopitsa G.P., Pavlova A.A., Popova E.N., Smirnova V.E., Smyslov R.Y., Svetlichnyi V.M., Vaganov G.V., et al. Domain Structure, Thermal and Mechanical Properties of Polycaprolactone-Based Multiblock Polyurethane-Ureas under Control of Hard and Soft Segment Lengths. Polymers. 2022;14:4145. doi: 10.3390/polym14194145. PubMed DOI PMC
Jiang L., Ren Z., Zhao W., Liu W., Liu H., Zhu C. Synthesis and structure/properties characterizations of four polyurethane model hard segments. R. Soc. Open Sci. 2018;5:180536. doi: 10.1098/rsos.180536. PubMed DOI PMC
Jin X., Guo N., You Z., Tan Y. Design and Performance of Polyurethane Elastomers Composed with Different Soft Segments. Materials. 2020;13:4991. doi: 10.3390/ma13214991. PubMed DOI PMC
Klinedinst D.B., Yilgör I., Yilgör E., Zhang M., Wilkes G.L. The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer. 2012;53:5358–5366. doi: 10.1016/j.polymer.2012.08.005. DOI
Liu H., Bi Z., Wan Z., Wang X., Wan Y., Guo X., Cai Z. Preparation and Performance Optimization of Two-Component Waterborne Polyurethane Locomotive Coating. Coatings. 2020;10:4. doi: 10.3390/coatings10010004. DOI
Vaca M.L.A., Gonzalez J.S., Hoppe C.E. Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol. 2022;2:426–439. doi: 10.3390/macromol2030027. DOI
Saeedi I.A., Andritsch T., Vaughan A.S. On the Dielectric Behavior of Amine znd Anhydride Cured Epoxy Resins Modified Using Multi-Terminal Epoxy Functional Network Modifier. Polymers. 2019;11:1271. doi: 10.3390/polym11081271. PubMed DOI PMC
Petrović Z.S., Ferguson J. Polyurethane elastomers. Prog. Polym. Sci. 1991;16:695–836. doi: 10.1016/0079-6700(91)90011-9. DOI
Ouellette R.J., Rawn J.D. Principles of Organic Chemistry. Elsevier; Amsterdam, The Netherlands: 2015. Synthetic Polymers; pp. 397–419. DOI
Heath D.E., Guelcher S.A., Cooper S.L. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Academic Press; Amsterdam, The Netherlands: 2013. Polyurethanes; pp. 79–82. DOI
Janik H., Sienkiewicz M., Kucinska-Lipka J. Handbook of Thermoset Plastics. 3rd ed. William Andrew Publishing; Norwich, NY, USA: 2014. Polyurethanes; pp. 253–295. DOI
Ma S., Webster D.C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci. 2018;76:65–110. doi: 10.1016/j.progpolymsci.2017.07.008. DOI
Montarnal D., Capelot M., Tournilhac F., Leibler L. Silica-Like Malleable Materials from Permanent Organic Networks. Science. 2011;334:965–968. doi: 10.1126/science.1212648. PubMed DOI
Frisch K.C., Jr. Chapter 16—Chemistry and technology of polyurethane adhesives. Adhes. Sci. Eng. 2002;2:759–812. doi: 10.1016/B978-044451140-9/50016-0. DOI
Rao R.R., Mondy L.A., Long K.N., Celina M.C., Wyatt N., Roberts C.C., Soehnel M.M., Brunini V.E. The kinetics of polyurethane structural foam formation: Foaming and polymerization. AIChE J. 2017;63:2945–2957. doi: 10.1002/aic.15680. DOI
Abram E.R., Bowler N. Effect of relative humidity on the curing and dielectric properties of polyurethane-based composites; Proceedings of the CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena; Nashville, TN, USA. 16–19 October 2005; DOI
Chen X., Hu C., Xu H., Qu R., Hu X., Yang J., Song X. Synthesized polyurethane from p-toluenesulfonyl isocyanate and epichlorohydrin via salen catalysis. Polym. Adv. Technol. 2022;33:1892–1897. doi: 10.1002/pat.5646. DOI
Członka S., Kairytė A., Miedzińska K., Strąkowska A., Adamus-Włodarczyk A. Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.) Int. J. Mol. Sci. 2021;22:3744. doi: 10.3390/ijms22073744. PubMed DOI PMC
Kúdelčík J., Hardoň Š., Trnka P., Michal O., Hornak J. Dielectric Responses of Polyurethane/Zinc Oxide Blends for Dry-Type Cast Cold-Curing Resin Transformers. Polymers. 2021;13:375. doi: 10.3390/polym13030375. PubMed DOI PMC
Wondu E., Lule Z., Kim J. Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding. Polymers. 2019;11:1103. doi: 10.3390/polym11071103. PubMed DOI PMC
Altafim R.A.C., Murakami C.R., Neto S.C., Araújo L.C.R., Chierice G.O. The Effects of Fillers on Polyurethane Resin-based Electrical Insulators. Mater. Res. 2003;6:187–197. doi: 10.1590/S1516-14392003000200013. DOI
Vedage G.A., Burdeniuc J.J., Arnold A.R., Jr., Tobias J.D. Crosslinkers for Improving Stability of Polyurethane Foams. 8,552,078. [(accessed on 20 February 2023)];U.S. Patent. 2013 October 8; Available online: https://patents.google.com/patent/US8552078B2/en.
Tramontano J., Blank W.J. Crosslinking of Water-Borne Polyurethane Dispersions; Proceedings of the 21st Annual Waterborne, High-Solids, and Powder Coatings Symposium; New Orleans, LA, USA. 9–11 February 1994; [(accessed on 20 February 2023)]. Available online: https://www.paint.org/wp-content/uploads/2021/09/jctSEPT95-Tramontano.pdf.
Ionescu M. Polymer Polyols (Filled Polyols) Chemistry and Technology of Polyols for Polyurethanes. 2nd ed. Smithers Rapra Technology Ltd.; Shropshire, UK: 2016.
Cheremisinoff N.P.V. In: Condensed Encyclopedia of Polymer Engineering Terms. Cheremisinoff N.P., editor. Butterworth-Heinemann; Boston, MA, USA: 2001. pp. 340–347.
Akinwekomi A.D., Tang C.-Y., Tsui G.C.-P., Law W.-C., Chen L., Yang X.-S., Hamdi M. Synthesis and Characterisation of Floatable Magnesium Alloy Syntactic Foams with Hybridised Cell Morphology. Mater. Des. 2018;160:591–600. doi: 10.1016/j.matdes.2018.10.004. DOI
Singh J.P., Chae K.H. D∘ Ferromagnetism of Magnesium Oxide. Condens. Matter. 2017;2:36. doi: 10.3390/condmat2040036. DOI
Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int. J. Mol. Sci. 2021;22:12752. doi: 10.3390/ijms222312752. PubMed DOI PMC
Fernandes M., RB Singh K., Sarkar T., Singh P., Pratap Singh R. Recent Applications of Magnesium Oxide (MgO) Nanoparticles in Various Domains. Adv. Mater. Lett. 2020;11:1–10. doi: 10.5185/amlett.2020.081543. DOI
Fan S., Zhang X., Lu Y., Gao Y. Characterization of HTV Silicone Rubber with Different Content of ATH Filler by Mechanical Measurements, FTIR and XPS Analyzes; Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM); Xi’an, China. 20–24 May 2018; DOI
Asefnejad A., Khorasani T.M., Behnamghader, Farsadzadeh B. Bonakdar Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: Physical properties and in vitro assay. Int. J. Nanomed. 2011;6:2375–2384. doi: 10.2147/IJN.S15586. PubMed DOI PMC
Diasa R.C.M., Serakides A.M.G.R., Ayresa E., Oréfice R.L. Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Mater. Res. 2010;13:211–218. doi: 10.1590/S1516-14392010000200015. DOI
Bandekar J., Klima S. FT-IR spectroscopic studies of polyurethanes Part I. Bonding between urethane COC groups and the NH Groups. J. Mol. Struct. 1991;263:45–57. doi: 10.1016/0022-2860(91)80054-8. DOI
Dalpech M., Miranda G. Waterborne polyurethanes: Influence of chain extender in ftir spectra profiles. Open Eng. 2012;2:231–238. doi: 10.2478/s13531-011-0060-3. DOI
VUKI, a.s. Zalévací hmoty VUKUR. VUKOL O22. 2018. [(accessed on 20 February 2023)]. Available online: https://www.vuki.sk/files/technicke_listy/TDS-VUKOL-O22-ver-2018-04-30-sk.pdf.
VUKI, a.s. Zalévací hmoty VUKUR. VUKOL O33n. 2019. [(accessed on 20 February 2023)]. Available online: https://www.vuki.sk/files/technicke_listy/TDS-VUKOL-O33-n-n-ver-2019-03-28-sk.pdf.
Hornak J., Trnka P., Kadlec P., Michal O., Mentlík V., Šutta P., Csányi G.M., Tamus Z.Á. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials. 2018;8:381. doi: 10.3390/nano8060381. PubMed DOI PMC
Rahman M.M. Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers. 2020;12:1535. doi: 10.3390/polym12071535. PubMed DOI PMC
Bittmann B., Haupert F., Schlarb A.K. Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason. Sonochem. 2009;16:622–628. doi: 10.1016/j.ultsonch.2009.01.006. PubMed DOI
Goyat M.S., Ray S., Ghosh P.K. Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos. Part A Appl. Sci. Manuf. 2011;42:1421–1431. doi: 10.1016/j.compositesa.2011.06.006. DOI
Kúdelčík J., Hardoň Š., Hockicko P., Kúdelčíková M., Hornak J., Prosr P., Trnka P. Study of the Complex Permittivity of a Polyurethane Matrix Modified by Nanoparticles. IEEE Access. 2020;9:49547–49556. doi: 10.1109/ACCESS.2021.3069144. DOI
Palimi M.J., Rostami M., Mahdavian M., Ramezanzadeh B. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites. Appl. Surf. Sci. 2014;320:60–72. doi: 10.1016/j.apsusc.2014.09.026. DOI
Guo Z., Park S., Wei S., Pereira T., Moldovan M., Karki A.B., Young D.P., Hahn H.T. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology. 2007;18:33. doi: 10.1088/0957-4484/18/33/335704. DOI
Sabzi M., Mirabedini S.M., Zohuriaan-Mehr J., Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat. 2009;65:222–228. doi: 10.1016/j.porgcoat.2008.11.006. DOI
Choi J.Y., Park C.H., Lee J. Effect of Polymer Molecular Weight on Nanocomminution of Poorly Soluble Drug. Drug Deliv. 2008;15:347–353. doi: 10.1080/10717540802039113. PubMed DOI
Corbierre M.K., Cameron N.S., Sutton M., Laaziri K., Lennox B.R. Gold Nanoparticle/Polymer Nanocomposites: Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density. Langmuir. 2005;21:6063–6072. doi: 10.1021/la047193e. PubMed DOI
Hornak J., Kadlec P., Polanský R. Halloysite Nanotubes as an Additive to Ensure Enhanced Characteristics of Cold-Curing Epoxy Resins under Fire Conditions. Polymers. 2020;12:1881. doi: 10.3390/polym12091881. PubMed DOI PMC
Zahir M.H., Rahman M.M., Irshad K., Rahman M.M. Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol. Nanomaterials. 2019;9:1773. doi: 10.3390/nano9121773. PubMed DOI PMC
Salzer R. Peter R. Griffiths, James A. de Haseth: Fourier Transform Infrared Spectrometry. 2nd ed. Wiley-Interscience; Hoboken, NJ, USA: 2008.
Baran A., Vrábel P., Kovaľaková M., Hutníková M., Fričová O., Olčák D. Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. J. Appl. Polym. Sci. 2020;137:33. doi: 10.1002/app.48964. DOI
Mujbil H.H., Al Jebur L.A., Yousif E., Kadhom M., Mohammed A., Ahmed D.S., Ali M., Hashim H. Utilization of Metal Oxides Nanoparticles in Modulating Polyvinyl Chloride Films to Resist Ultraviolet Light. Metals. 2022;12:1413. doi: 10.3390/met12091413. DOI
Polanský R., Prosr P., Čermák M. Determination of the thermal endurance of PCB FR4 epoxy laminates via thermal analyses. Polym. Degrad. Stab. 2014;104:107–115. doi: 10.1016/j.polymdegradstab.2014.03.043. DOI
Havran P., Cimbala R., Király J., Rajňák M., Bucko S., Kurimský J., Dolník B. Frequency-Dependent Dielectric Spectroscopy of Insulating Nanofluids Based on GTL Oil during Accelerated Thermal Aging. Processes. 2022;10:2405. doi: 10.3390/pr10112405. DOI
Kremer F., Schönhals A., editors. Broadband Dielectric Spectroscopy. Springer; Berlin/Heidelberg, Germany: 2003.
Kao K.C. Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; Amsterdam, The Netherlands: 2004.
Lee H.G., Kim J.G. Volume and Surface Resistivity Measurement of Insulating Materials Using Guard-Ring Terminal Electrodes. Energies. 2020;13:2811. doi: 10.3390/en13112811. DOI
Kadota Y. Dielectric Breakdown from a Reliability and Safety Viewpoint. [(accessed on 20 February 2023)];Test Navi Rep. 2022 135:42. Available online: https://www.test-navi.com/eng/report/pdf/DielectricBreakdownFromAReliabilitysAndSafetyViewpoint.pdf.
Spěváček J., Brus J., Divers T., Grohens Y. Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur. Polym. J. 2007;43:1866–1875. doi: 10.1016/j.eurpolymj.2007.02.021. DOI
Azari M., Sadeghi M., Aroon M., Matsuura T. Polyurethane Mixed Matrix Membranes for Gas Separation: A Systematic Study on Effect of SiO2/TiO2 Nanoparticles. J. Membr. Sci. Res. 2019;5:33–43. doi: 10.22079/jmsr.2018.80692.1175.10.1016/j.polymdegradstab.2018.01.028. DOI
Shi X., Jiang S., Zhu J., Li G., Peng X. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv. 2018;8:9985–9995. doi: 10.1039/C7RA13315D. PubMed DOI PMC
Jianjun M., Junxiao Y., Yawen H., Ke C. Aluminum–organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J. Mater. Chem. 2012;22:2007–2017. doi: 10.1039/C1JM13332B. DOI
Rani N., Chahal S., Kumar P., Shukla R., Singh S.K. A comparative study on magnesium hydroxide and magnesium oxide nanostructures. Dae Solid State Phys. Symp. 2019;2115:030163. doi: 10.1063/1.5113002. DOI
Akram M.W., Fakhar-e-Alam M., Atif M., Butt A.R., Asghar A., Jamil Y., Alimgeer K.S., Wang Z.M. In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Sci. Rep. 2018;8:4576. doi: 10.1038/s41598-018-23105-y. PubMed DOI PMC
Bi W., Sun J., Yu G., Goegelein C.H., Hoch M., Klaassen J., Kirchhoff J., Zhao S. Study on Interaction between Aluminum Hydroxide and Vinyltriethoxy Silane by Gas Chromatography-Mass Spectrometry; Proceedings of the IOP Conference Series: Earth and Environmental Science; Ordos, China. 27–28 April 2019; DOI
Wenhu Y., Ran Y., Xu Y., Man X., Sisi H., Xiaolong C. Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites. Trans. Electr. Electron. Mater. 2012;13:116–120. doi: 10.4313/TEEM.2012.13.3.116. DOI
Andritsch T., Kochetov R., Morshuis P.H.F., Smit J.J. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites; Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics; Potsdam, Germany. 4–9 July 2010; DOI
Khan M.Z., Wang F., Li J., Hassan M.A.S., Ahmad J., He L., Kaizhen W. AC Breakdown Strength and Volume Resistivity Characteristics of Epoxy Resin Composite with Surface Modified Alumina Nanoparticles; Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE); Athens, Greece. 10–13 September 2018; DOI
Wang Y., Xiao K., Wang C., Yang L., Wang F. Effect of Nanoparticle Surface Modification and Filling Concentration on Space Charge Characteristics in TiO2/XLPE Nanocomposites. J. Nanomater. 2016;2016:2840410. doi: 10.1155/2016/2840410. DOI
Kyokane J., Tsujimoto N., Ishida M., Fukuma M. Space charge characteristics of fullerenol and carbon nanotube doped polyurethane elastomer (PUE) actuators; Proceedings of the 2005 International Symposium on Electrical Insulating Materials; Kitakyushu, Japan. 5–9 June 2005; DOI
Watanabe M., Hirai T. Space charge distribution in bending-electrostrictive polyurethane films doped with salts. J. Appl. Polym. Sci. 2004;42:523–531. doi: 10.1002/polb.10728. DOI
Watanabe M., Wakimoto N., Shirai H., Hirai T. Bending electrostriction and space-charge distribution in polyurethane films. J. Appl. Phys. 2003;94:2494. doi: 10.1063/1.1582380. DOI
Andritch T. Ph.D. Thesis. Delft University of Technology; Delft, The Netherlands: 2010. Epoxy Based Nanodielectrics for High Voltage DC-Applications—Synthesis, Dielectric Properties and Space Charge Dynamics.
Awad S., Al-Rashdi A., Abdel-Hady E.E., Van Horn J.D. Free volume properties of the zinc oxide nanoparticles/waterborne polyurethane coating system studied by a slow positron beam. J. Compos. Mater. 2018;53:1765–1775. doi: 10.1177/0021998318809526. DOI
Park S.H., Hwang J., Park G.S., Ha J.H., Zhang M., Kim D., Yun D.J., Lee S., Lee S.H. Modeling the electrical resistivity of polymer composites with segregated structures. Nat. Commun. 2019;10:2537. doi: 10.1038/s41467-019-10514-4. PubMed DOI PMC
Ge G., Tang Y., Li Y., Huang L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Appl. Sci. 2020;10:7018. doi: 10.3390/app10207018. DOI
Hu S., Zhou Y., Yuan C., Wang W., Hu J., Li Q., He J. Surface-modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite. High Volt. 2020;5:249–255. doi: 10.1049/hve.2019.0159. DOI
Shah Z.M., Khanday F.A., Malik G.F.A., Jhat Z.A. Fractional-Order Design. Academic Press; Cambridge, MA, USA: 2022. Fabrication of Polymer Nanocomposite-Based Fractional-Order Capacitor: A Guide; pp. 437–483. DOI
Habeeb M., Hamza R.S.A. Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones. J. Electr. Eng. Inform. 2018;6:428–435. doi: 10.11591/ijeei.v6i1.511. DOI
Bertasius P., Meisak D., Macutkevic J., Kuzhir P., Selskis A., Volnyanko E., Banys J. Fine Tuning of Electrical Transport and Dielectric Properties of Epoxy/Carbon Nanotubes Composites via Magnesium Oxide Additives. Polymers. 2019;11:2044. doi: 10.3390/polym11122044. PubMed DOI PMC
Ahmad Z. Polymer Dielectric Materials. Dielectr. Mater. 2012:1–24. doi: 10.5772/50638. DOI
Boiteux G., Seytre G., Cuve L., Pascault J.P. Dielectric studies of segmented polyurethanes based on polyolefine: Relations between structure and dielectric behaviour. J. Non. Cryst. Solids. 1991;131–133:1131–1135. doi: 10.1016/0022-3093(91)90739-S. DOI
Kanapitsas A., Pissis P., Gomez Ribelles J.L., Monleon Pradas M., Privalko E.G., Privalko V.P. Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft- and hard-chain segments. J. Appl. Polym. Sci. 1999;71:1209–1221. doi: 10.1002/(SICI)1097-4628(19990222)71:8<1209::AID-APP1>3.0.CO;2-5. DOI
Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Semiinterpenetrating polymer networks based on polyurethane and polyvinylpyrrolidone. I. Thermodynamic state and dynamic mechanical analysis. J. Appl. Polym. Sci. 2001;80:852–862. doi: 10.1002/1097-4628(20010509)80:6<852::AID-APP1163>3.0.CO;2-Y. DOI
Pissis P., Apekis L., Christodoulides C., Niaounakis M., Kyritsis A., Nedbal J. Water effects in polyurethane block copolymers. J. Polym. Sci. 1996;34:1529–1539. doi: 10.1002/(SICI)1099-0488(19960715)34:9<1529::AID-POLB1>3.0.CO;2-G. DOI
Oprea S., Potolinca O., Oprea V. Dielectric properties of castor oil cross-linked polyurethane. High Perform. Polym. 2010;23:49–58. doi: 10.1177/0954008310378403. DOI
Madbouly S.A., Kessler M.R. Dielectric spectroscopy for biorenewable plant oil-based polyurethane; Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); Des Moines, IA, USA. 19–22 October 2014; DOI
Pissis P., Kanapitsas A., Savelyev Y.V., Akhranovich E.R., Privalko E.G., Privalko V.P. Influence of chain extenders and chain end groups on properties of segmented polyurethanes. II. Dielectric study. Polymer. 1998;39:3431–3435. doi: 10.1016/S0032-3861(97)10100-8. DOI
Ersoy A., Hiziroglu H.R. Electrical breakdown of polyurethane-based nanocomposites; Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics; Potsdam, Germany. 4–9 July 2010; DOI
Ha Thuc C.N., Cao H.T., Nguyen D.M., Tran M.A., Duclaux L., Grillet A.-C., Ha Thuc H. Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants. J. Nanomater. 2014;2014:302735. doi: 10.1155/2014/302735. DOI
Butyrskaya E., Nechaeva L., Shaposhnikov V., Selemenev V. Determining role of hydrogen bonding in electrically driven membrane transport: Quantum-chemical and molecular dynamics study. Pet. Chem. 2015;55:918–926. doi: 10.1134/S0965544115100047. DOI
Zou C., Fothergill J.C., Rowe S.W. The effect of water absorption on the dielectric properties of epoxy nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008;15:106–117. doi: 10.1109/T-DEI.2008.4446741. DOI
Anancharoenwong E., Chueangchayaphan W., Rakkapao N., Marthosa S., Chaisrikhwun B. Thermo-mechanical and antimicrobial properties of natural rubber-based polyurethane nanocomposites for biomedical applications. Polym. Bull. 2021;78:833–848. doi: 10.1007/s00289-020-03137-z. DOI
D’Orazio L., Grippo A. A water dispersed Titanium dioxide/poly(carbonate urethane) nanocomposite for protecting cultural heritage: Preparation and properties. Prog. Org. Coat. 2015;79:1–7. doi: 10.1016/j.porgcoat.2014.09.017. DOI
Ginzburg V.V., Bicerano J., Christenson C.P., Schrock A.K., Patashinski A.Z. Nano- and Micromechanics of Polymer Blends and Composites. Carl Hanser Verlag; Munich, Germany: 2009. Modeling Mechanical Properties of Segmented Polyurethanes; pp. 59–89. DOI
Wongsamut C., Suwanpreedee R., Manuspiya H. Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. Int. J. Adhes. Adhes. 2020;102:102677. doi: 10.1016/j.ijadhadh.2020.102677. DOI