A Comprehensive Study of Polyurethane Potting Compounds Doped with Magnesium Oxide Nanoparticles

. 2023 Mar 20 ; 15 (6) : . [epub] 20230320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36987311

Grantová podpora
SGS-2021-003 Student Grant Agency of the University of West Bohemia in Pilsen
APVV-21-0078 Slovak Research and Development Agency
APVV-21-0449 Slovak Research and Development Agency
1/2022 (17292) Grant System of the University of Zilina

Recently, polyurethanes (PURs) have become a very promising group of materials with considerable utilization and innovation potential. This work presents a comprehensive analysis of the changes in material properties important for PUR applications in the electrical industry due to the incorporation of magnesium oxide (MgO) nanoparticles at different weight ratios. From the results of the investigations carried out, it is evident that the incorporation of MgO improves the volume (by up to +0.5 order of magnitude) and surface (+1 order of magnitude) resistivities, reduces the dielectric losses at higher temperatures (-62%), improves the thermal stability of the material, and slows the decomposition reaction of polyurethane at specific temperatures (+30 °C). In contrast, the incorporation of MgO results in a slight decrease in the dielectric strength (-15%) and a significant decrease in the mechanical strength (-37%).

Zobrazit více v PubMed

Szycher M. Szycher’S Handbook of Polyurethanes. CRC Press Taylor & Francis Group; Boca Raton, FL, USA: 2013. Polyurethanes; pp. 1–12.

Volkova E.R., Tereshatov V.V., Karmanov V.I., Makarova M.A., Slobodinyuk A.I. Polyurethane adhesive composition cured at room temperature. Polym. Sci. Ser. D. 2013;6:120–124. doi: 10.1134/S1995421213020159. DOI

Liu S.H., Shen M.Y., Kuan C.F., Kuan H.C., Ke C.Y., Chiang C.L. Improving Thermal Stability of Polyurethane through the Addition of Hyperbranched Polysiloxane. Polymers. 2019;11:697. doi: 10.3390/polym11040697. PubMed DOI PMC

Pagacz J., Hebda E., Janowski B., Sternik D., Jancia M., Pielichowski K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym. Degrad. Stab. 2018;149:129–142. doi: 10.1016/j.polymdegradstab.2018.01.028. DOI

Amado J.C.Q. Thermal Resistance Properties of Polyurethanes and Its Composites. In: Evingür G.A., Pekcan Ö., Achilias D.S., editors. Thermosoftening Plastics. IntechOpen; London, UK: 2019. DOI

Gaboriaud F., Vantelon J.P. Mechanism of thermal degradation of polyurethane based on MDI and propoxylated trimethylol propane. J. Polym. Sci. Polym. Chem. Ed. 1982;20:2063–2071. doi: 10.1002/pol.1982.170200809. DOI

Kumagai S., Motokucho S., Yabuki R., Anzai A., Kameda T., Watanabe A., Nakatani H., Yoshioka T. Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane. JAAP. 2017;126:337–345. doi: 10.1016/j.jaap.2017.05.012. DOI

Bugrov A.N., Gorshkova Y.E., Ivan’kova E.M., Kopitsa G.P., Pavlova A.A., Popova E.N., Smirnova V.E., Smyslov R.Y., Svetlichnyi V.M., Vaganov G.V., et al. Domain Structure, Thermal and Mechanical Properties of Polycaprolactone-Based Multiblock Polyurethane-Ureas under Control of Hard and Soft Segment Lengths. Polymers. 2022;14:4145. doi: 10.3390/polym14194145. PubMed DOI PMC

Jiang L., Ren Z., Zhao W., Liu W., Liu H., Zhu C. Synthesis and structure/properties characterizations of four polyurethane model hard segments. R. Soc. Open Sci. 2018;5:180536. doi: 10.1098/rsos.180536. PubMed DOI PMC

Jin X., Guo N., You Z., Tan Y. Design and Performance of Polyurethane Elastomers Composed with Different Soft Segments. Materials. 2020;13:4991. doi: 10.3390/ma13214991. PubMed DOI PMC

Klinedinst D.B., Yilgör I., Yilgör E., Zhang M., Wilkes G.L. The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer. 2012;53:5358–5366. doi: 10.1016/j.polymer.2012.08.005. DOI

Liu H., Bi Z., Wan Z., Wang X., Wan Y., Guo X., Cai Z. Preparation and Performance Optimization of Two-Component Waterborne Polyurethane Locomotive Coating. Coatings. 2020;10:4. doi: 10.3390/coatings10010004. DOI

Vaca M.L.A., Gonzalez J.S., Hoppe C.E. Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol. 2022;2:426–439. doi: 10.3390/macromol2030027. DOI

Saeedi I.A., Andritsch T., Vaughan A.S. On the Dielectric Behavior of Amine znd Anhydride Cured Epoxy Resins Modified Using Multi-Terminal Epoxy Functional Network Modifier. Polymers. 2019;11:1271. doi: 10.3390/polym11081271. PubMed DOI PMC

Petrović Z.S., Ferguson J. Polyurethane elastomers. Prog. Polym. Sci. 1991;16:695–836. doi: 10.1016/0079-6700(91)90011-9. DOI

Ouellette R.J., Rawn J.D. Principles of Organic Chemistry. Elsevier; Amsterdam, The Netherlands: 2015. Synthetic Polymers; pp. 397–419. DOI

Heath D.E., Guelcher S.A., Cooper S.L. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Academic Press; Amsterdam, The Netherlands: 2013. Polyurethanes; pp. 79–82. DOI

Janik H., Sienkiewicz M., Kucinska-Lipka J. Handbook of Thermoset Plastics. 3rd ed. William Andrew Publishing; Norwich, NY, USA: 2014. Polyurethanes; pp. 253–295. DOI

Ma S., Webster D.C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci. 2018;76:65–110. doi: 10.1016/j.progpolymsci.2017.07.008. DOI

Montarnal D., Capelot M., Tournilhac F., Leibler L. Silica-Like Malleable Materials from Permanent Organic Networks. Science. 2011;334:965–968. doi: 10.1126/science.1212648. PubMed DOI

Frisch K.C., Jr. Chapter 16—Chemistry and technology of polyurethane adhesives. Adhes. Sci. Eng. 2002;2:759–812. doi: 10.1016/B978-044451140-9/50016-0. DOI

Rao R.R., Mondy L.A., Long K.N., Celina M.C., Wyatt N., Roberts C.C., Soehnel M.M., Brunini V.E. The kinetics of polyurethane structural foam formation: Foaming and polymerization. AIChE J. 2017;63:2945–2957. doi: 10.1002/aic.15680. DOI

Abram E.R., Bowler N. Effect of relative humidity on the curing and dielectric properties of polyurethane-based composites; Proceedings of the CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena; Nashville, TN, USA. 16–19 October 2005; DOI

Chen X., Hu C., Xu H., Qu R., Hu X., Yang J., Song X. Synthesized polyurethane from p-toluenesulfonyl isocyanate and epichlorohydrin via salen catalysis. Polym. Adv. Technol. 2022;33:1892–1897. doi: 10.1002/pat.5646. DOI

Członka S., Kairytė A., Miedzińska K., Strąkowska A., Adamus-Włodarczyk A. Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.) Int. J. Mol. Sci. 2021;22:3744. doi: 10.3390/ijms22073744. PubMed DOI PMC

Kúdelčík J., Hardoň Š., Trnka P., Michal O., Hornak J. Dielectric Responses of Polyurethane/Zinc Oxide Blends for Dry-Type Cast Cold-Curing Resin Transformers. Polymers. 2021;13:375. doi: 10.3390/polym13030375. PubMed DOI PMC

Wondu E., Lule Z., Kim J. Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding. Polymers. 2019;11:1103. doi: 10.3390/polym11071103. PubMed DOI PMC

Altafim R.A.C., Murakami C.R., Neto S.C., Araújo L.C.R., Chierice G.O. The Effects of Fillers on Polyurethane Resin-based Electrical Insulators. Mater. Res. 2003;6:187–197. doi: 10.1590/S1516-14392003000200013. DOI

Vedage G.A., Burdeniuc J.J., Arnold A.R., Jr., Tobias J.D. Crosslinkers for Improving Stability of Polyurethane Foams. 8,552,078. [(accessed on 20 February 2023)];U.S. Patent. 2013 October 8; Available online: https://patents.google.com/patent/US8552078B2/en.

Tramontano J., Blank W.J. Crosslinking of Water-Borne Polyurethane Dispersions; Proceedings of the 21st Annual Waterborne, High-Solids, and Powder Coatings Symposium; New Orleans, LA, USA. 9–11 February 1994; [(accessed on 20 February 2023)]. Available online: https://www.paint.org/wp-content/uploads/2021/09/jctSEPT95-Tramontano.pdf.

Ionescu M. Polymer Polyols (Filled Polyols) Chemistry and Technology of Polyols for Polyurethanes. 2nd ed. Smithers Rapra Technology Ltd.; Shropshire, UK: 2016.

Cheremisinoff N.P.V. In: Condensed Encyclopedia of Polymer Engineering Terms. Cheremisinoff N.P., editor. Butterworth-Heinemann; Boston, MA, USA: 2001. pp. 340–347.

Akinwekomi A.D., Tang C.-Y., Tsui G.C.-P., Law W.-C., Chen L., Yang X.-S., Hamdi M. Synthesis and Characterisation of Floatable Magnesium Alloy Syntactic Foams with Hybridised Cell Morphology. Mater. Des. 2018;160:591–600. doi: 10.1016/j.matdes.2018.10.004. DOI

Singh J.P., Chae K.H. D∘ Ferromagnetism of Magnesium Oxide. Condens. Matter. 2017;2:36. doi: 10.3390/condmat2040036. DOI

Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int. J. Mol. Sci. 2021;22:12752. doi: 10.3390/ijms222312752. PubMed DOI PMC

Fernandes M., RB Singh K., Sarkar T., Singh P., Pratap Singh R. Recent Applications of Magnesium Oxide (MgO) Nanoparticles in Various Domains. Adv. Mater. Lett. 2020;11:1–10. doi: 10.5185/amlett.2020.081543. DOI

Fan S., Zhang X., Lu Y., Gao Y. Characterization of HTV Silicone Rubber with Different Content of ATH Filler by Mechanical Measurements, FTIR and XPS Analyzes; Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM); Xi’an, China. 20–24 May 2018; DOI

Asefnejad A., Khorasani T.M., Behnamghader, Farsadzadeh B. Bonakdar Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: Physical properties and in vitro assay. Int. J. Nanomed. 2011;6:2375–2384. doi: 10.2147/IJN.S15586. PubMed DOI PMC

Diasa R.C.M., Serakides A.M.G.R., Ayresa E., Oréfice R.L. Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Mater. Res. 2010;13:211–218. doi: 10.1590/S1516-14392010000200015. DOI

Bandekar J., Klima S. FT-IR spectroscopic studies of polyurethanes Part I. Bonding between urethane COC groups and the NH Groups. J. Mol. Struct. 1991;263:45–57. doi: 10.1016/0022-2860(91)80054-8. DOI

Dalpech M., Miranda G. Waterborne polyurethanes: Influence of chain extender in ftir spectra profiles. Open Eng. 2012;2:231–238. doi: 10.2478/s13531-011-0060-3. DOI

VUKI, a.s. Zalévací hmoty VUKUR. VUKOL O22. 2018. [(accessed on 20 February 2023)]. Available online: https://www.vuki.sk/files/technicke_listy/TDS-VUKOL-O22-ver-2018-04-30-sk.pdf.

VUKI, a.s. Zalévací hmoty VUKUR. VUKOL O33n. 2019. [(accessed on 20 February 2023)]. Available online: https://www.vuki.sk/files/technicke_listy/TDS-VUKOL-O33-n-n-ver-2019-03-28-sk.pdf.

Hornak J., Trnka P., Kadlec P., Michal O., Mentlík V., Šutta P., Csányi G.M., Tamus Z.Á. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials. 2018;8:381. doi: 10.3390/nano8060381. PubMed DOI PMC

Rahman M.M. Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers. 2020;12:1535. doi: 10.3390/polym12071535. PubMed DOI PMC

Bittmann B., Haupert F., Schlarb A.K. Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason. Sonochem. 2009;16:622–628. doi: 10.1016/j.ultsonch.2009.01.006. PubMed DOI

Goyat M.S., Ray S., Ghosh P.K. Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos. Part A Appl. Sci. Manuf. 2011;42:1421–1431. doi: 10.1016/j.compositesa.2011.06.006. DOI

Kúdelčík J., Hardoň Š., Hockicko P., Kúdelčíková M., Hornak J., Prosr P., Trnka P. Study of the Complex Permittivity of a Polyurethane Matrix Modified by Nanoparticles. IEEE Access. 2020;9:49547–49556. doi: 10.1109/ACCESS.2021.3069144. DOI

Palimi M.J., Rostami M., Mahdavian M., Ramezanzadeh B. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites. Appl. Surf. Sci. 2014;320:60–72. doi: 10.1016/j.apsusc.2014.09.026. DOI

Guo Z., Park S., Wei S., Pereira T., Moldovan M., Karki A.B., Young D.P., Hahn H.T. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology. 2007;18:33. doi: 10.1088/0957-4484/18/33/335704. DOI

Sabzi M., Mirabedini S.M., Zohuriaan-Mehr J., Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat. 2009;65:222–228. doi: 10.1016/j.porgcoat.2008.11.006. DOI

Choi J.Y., Park C.H., Lee J. Effect of Polymer Molecular Weight on Nanocomminution of Poorly Soluble Drug. Drug Deliv. 2008;15:347–353. doi: 10.1080/10717540802039113. PubMed DOI

Corbierre M.K., Cameron N.S., Sutton M., Laaziri K., Lennox B.R. Gold Nanoparticle/Polymer Nanocomposites: Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density. Langmuir. 2005;21:6063–6072. doi: 10.1021/la047193e. PubMed DOI

Hornak J., Kadlec P., Polanský R. Halloysite Nanotubes as an Additive to Ensure Enhanced Characteristics of Cold-Curing Epoxy Resins under Fire Conditions. Polymers. 2020;12:1881. doi: 10.3390/polym12091881. PubMed DOI PMC

Zahir M.H., Rahman M.M., Irshad K., Rahman M.M. Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol. Nanomaterials. 2019;9:1773. doi: 10.3390/nano9121773. PubMed DOI PMC

Salzer R. Peter R. Griffiths, James A. de Haseth: Fourier Transform Infrared Spectrometry. 2nd ed. Wiley-Interscience; Hoboken, NJ, USA: 2008.

Baran A., Vrábel P., Kovaľaková M., Hutníková M., Fričová O., Olčák D. Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. J. Appl. Polym. Sci. 2020;137:33. doi: 10.1002/app.48964. DOI

Mujbil H.H., Al Jebur L.A., Yousif E., Kadhom M., Mohammed A., Ahmed D.S., Ali M., Hashim H. Utilization of Metal Oxides Nanoparticles in Modulating Polyvinyl Chloride Films to Resist Ultraviolet Light. Metals. 2022;12:1413. doi: 10.3390/met12091413. DOI

Polanský R., Prosr P., Čermák M. Determination of the thermal endurance of PCB FR4 epoxy laminates via thermal analyses. Polym. Degrad. Stab. 2014;104:107–115. doi: 10.1016/j.polymdegradstab.2014.03.043. DOI

Havran P., Cimbala R., Király J., Rajňák M., Bucko S., Kurimský J., Dolník B. Frequency-Dependent Dielectric Spectroscopy of Insulating Nanofluids Based on GTL Oil during Accelerated Thermal Aging. Processes. 2022;10:2405. doi: 10.3390/pr10112405. DOI

Kremer F., Schönhals A., editors. Broadband Dielectric Spectroscopy. Springer; Berlin/Heidelberg, Germany: 2003.

Kao K.C. Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; Amsterdam, The Netherlands: 2004.

Lee H.G., Kim J.G. Volume and Surface Resistivity Measurement of Insulating Materials Using Guard-Ring Terminal Electrodes. Energies. 2020;13:2811. doi: 10.3390/en13112811. DOI

Kadota Y. Dielectric Breakdown from a Reliability and Safety Viewpoint. [(accessed on 20 February 2023)];Test Navi Rep. 2022 135:42. Available online: https://www.test-navi.com/eng/report/pdf/DielectricBreakdownFromAReliabilitysAndSafetyViewpoint.pdf.

Spěváček J., Brus J., Divers T., Grohens Y. Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur. Polym. J. 2007;43:1866–1875. doi: 10.1016/j.eurpolymj.2007.02.021. DOI

Azari M., Sadeghi M., Aroon M., Matsuura T. Polyurethane Mixed Matrix Membranes for Gas Separation: A Systematic Study on Effect of SiO2/TiO2 Nanoparticles. J. Membr. Sci. Res. 2019;5:33–43. doi: 10.22079/jmsr.2018.80692.1175.10.1016/j.polymdegradstab.2018.01.028. DOI

Shi X., Jiang S., Zhu J., Li G., Peng X. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv. 2018;8:9985–9995. doi: 10.1039/C7RA13315D. PubMed DOI PMC

Jianjun M., Junxiao Y., Yawen H., Ke C. Aluminum–organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J. Mater. Chem. 2012;22:2007–2017. doi: 10.1039/C1JM13332B. DOI

Rani N., Chahal S., Kumar P., Shukla R., Singh S.K. A comparative study on magnesium hydroxide and magnesium oxide nanostructures. Dae Solid State Phys. Symp. 2019;2115:030163. doi: 10.1063/1.5113002. DOI

Akram M.W., Fakhar-e-Alam M., Atif M., Butt A.R., Asghar A., Jamil Y., Alimgeer K.S., Wang Z.M. In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Sci. Rep. 2018;8:4576. doi: 10.1038/s41598-018-23105-y. PubMed DOI PMC

Bi W., Sun J., Yu G., Goegelein C.H., Hoch M., Klaassen J., Kirchhoff J., Zhao S. Study on Interaction between Aluminum Hydroxide and Vinyltriethoxy Silane by Gas Chromatography-Mass Spectrometry; Proceedings of the IOP Conference Series: Earth and Environmental Science; Ordos, China. 27–28 April 2019; DOI

Wenhu Y., Ran Y., Xu Y., Man X., Sisi H., Xiaolong C. Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites. Trans. Electr. Electron. Mater. 2012;13:116–120. doi: 10.4313/TEEM.2012.13.3.116. DOI

Andritsch T., Kochetov R., Morshuis P.H.F., Smit J.J. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites; Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics; Potsdam, Germany. 4–9 July 2010; DOI

Khan M.Z., Wang F., Li J., Hassan M.A.S., Ahmad J., He L., Kaizhen W. AC Breakdown Strength and Volume Resistivity Characteristics of Epoxy Resin Composite with Surface Modified Alumina Nanoparticles; Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE); Athens, Greece. 10–13 September 2018; DOI

Wang Y., Xiao K., Wang C., Yang L., Wang F. Effect of Nanoparticle Surface Modification and Filling Concentration on Space Charge Characteristics in TiO2/XLPE Nanocomposites. J. Nanomater. 2016;2016:2840410. doi: 10.1155/2016/2840410. DOI

Kyokane J., Tsujimoto N., Ishida M., Fukuma M. Space charge characteristics of fullerenol and carbon nanotube doped polyurethane elastomer (PUE) actuators; Proceedings of the 2005 International Symposium on Electrical Insulating Materials; Kitakyushu, Japan. 5–9 June 2005; DOI

Watanabe M., Hirai T. Space charge distribution in bending-electrostrictive polyurethane films doped with salts. J. Appl. Polym. Sci. 2004;42:523–531. doi: 10.1002/polb.10728. DOI

Watanabe M., Wakimoto N., Shirai H., Hirai T. Bending electrostriction and space-charge distribution in polyurethane films. J. Appl. Phys. 2003;94:2494. doi: 10.1063/1.1582380. DOI

Andritch T. Ph.D. Thesis. Delft University of Technology; Delft, The Netherlands: 2010. Epoxy Based Nanodielectrics for High Voltage DC-Applications—Synthesis, Dielectric Properties and Space Charge Dynamics.

Awad S., Al-Rashdi A., Abdel-Hady E.E., Van Horn J.D. Free volume properties of the zinc oxide nanoparticles/waterborne polyurethane coating system studied by a slow positron beam. J. Compos. Mater. 2018;53:1765–1775. doi: 10.1177/0021998318809526. DOI

Park S.H., Hwang J., Park G.S., Ha J.H., Zhang M., Kim D., Yun D.J., Lee S., Lee S.H. Modeling the electrical resistivity of polymer composites with segregated structures. Nat. Commun. 2019;10:2537. doi: 10.1038/s41467-019-10514-4. PubMed DOI PMC

Ge G., Tang Y., Li Y., Huang L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Appl. Sci. 2020;10:7018. doi: 10.3390/app10207018. DOI

Hu S., Zhou Y., Yuan C., Wang W., Hu J., Li Q., He J. Surface-modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite. High Volt. 2020;5:249–255. doi: 10.1049/hve.2019.0159. DOI

Shah Z.M., Khanday F.A., Malik G.F.A., Jhat Z.A. Fractional-Order Design. Academic Press; Cambridge, MA, USA: 2022. Fabrication of Polymer Nanocomposite-Based Fractional-Order Capacitor: A Guide; pp. 437–483. DOI

Habeeb M., Hamza R.S.A. Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones. J. Electr. Eng. Inform. 2018;6:428–435. doi: 10.11591/ijeei.v6i1.511. DOI

Bertasius P., Meisak D., Macutkevic J., Kuzhir P., Selskis A., Volnyanko E., Banys J. Fine Tuning of Electrical Transport and Dielectric Properties of Epoxy/Carbon Nanotubes Composites via Magnesium Oxide Additives. Polymers. 2019;11:2044. doi: 10.3390/polym11122044. PubMed DOI PMC

Ahmad Z. Polymer Dielectric Materials. Dielectr. Mater. 2012:1–24. doi: 10.5772/50638. DOI

Boiteux G., Seytre G., Cuve L., Pascault J.P. Dielectric studies of segmented polyurethanes based on polyolefine: Relations between structure and dielectric behaviour. J. Non. Cryst. Solids. 1991;131–133:1131–1135. doi: 10.1016/0022-3093(91)90739-S. DOI

Kanapitsas A., Pissis P., Gomez Ribelles J.L., Monleon Pradas M., Privalko E.G., Privalko V.P. Molecular mobility and hydration properties of segmented polyurethanes with varying structure of soft- and hard-chain segments. J. Appl. Polym. Sci. 1999;71:1209–1221. doi: 10.1002/(SICI)1097-4628(19990222)71:8<1209::AID-APP1>3.0.CO;2-5. DOI

Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Semiinterpenetrating polymer networks based on polyurethane and polyvinylpyrrolidone. I. Thermodynamic state and dynamic mechanical analysis. J. Appl. Polym. Sci. 2001;80:852–862. doi: 10.1002/1097-4628(20010509)80:6<852::AID-APP1163>3.0.CO;2-Y. DOI

Pissis P., Apekis L., Christodoulides C., Niaounakis M., Kyritsis A., Nedbal J. Water effects in polyurethane block copolymers. J. Polym. Sci. 1996;34:1529–1539. doi: 10.1002/(SICI)1099-0488(19960715)34:9<1529::AID-POLB1>3.0.CO;2-G. DOI

Oprea S., Potolinca O., Oprea V. Dielectric properties of castor oil cross-linked polyurethane. High Perform. Polym. 2010;23:49–58. doi: 10.1177/0954008310378403. DOI

Madbouly S.A., Kessler M.R. Dielectric spectroscopy for biorenewable plant oil-based polyurethane; Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); Des Moines, IA, USA. 19–22 October 2014; DOI

Pissis P., Kanapitsas A., Savelyev Y.V., Akhranovich E.R., Privalko E.G., Privalko V.P. Influence of chain extenders and chain end groups on properties of segmented polyurethanes. II. Dielectric study. Polymer. 1998;39:3431–3435. doi: 10.1016/S0032-3861(97)10100-8. DOI

Ersoy A., Hiziroglu H.R. Electrical breakdown of polyurethane-based nanocomposites; Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics; Potsdam, Germany. 4–9 July 2010; DOI

Ha Thuc C.N., Cao H.T., Nguyen D.M., Tran M.A., Duclaux L., Grillet A.-C., Ha Thuc H. Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants. J. Nanomater. 2014;2014:302735. doi: 10.1155/2014/302735. DOI

Butyrskaya E., Nechaeva L., Shaposhnikov V., Selemenev V. Determining role of hydrogen bonding in electrically driven membrane transport: Quantum-chemical and molecular dynamics study. Pet. Chem. 2015;55:918–926. doi: 10.1134/S0965544115100047. DOI

Zou C., Fothergill J.C., Rowe S.W. The effect of water absorption on the dielectric properties of epoxy nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008;15:106–117. doi: 10.1109/T-DEI.2008.4446741. DOI

Anancharoenwong E., Chueangchayaphan W., Rakkapao N., Marthosa S., Chaisrikhwun B. Thermo-mechanical and antimicrobial properties of natural rubber-based polyurethane nanocomposites for biomedical applications. Polym. Bull. 2021;78:833–848. doi: 10.1007/s00289-020-03137-z. DOI

D’Orazio L., Grippo A. A water dispersed Titanium dioxide/poly(carbonate urethane) nanocomposite for protecting cultural heritage: Preparation and properties. Prog. Org. Coat. 2015;79:1–7. doi: 10.1016/j.porgcoat.2014.09.017. DOI

Ginzburg V.V., Bicerano J., Christenson C.P., Schrock A.K., Patashinski A.Z. Nano- and Micromechanics of Polymer Blends and Composites. Carl Hanser Verlag; Munich, Germany: 2009. Modeling Mechanical Properties of Segmented Polyurethanes; pp. 59–89. DOI

Wongsamut C., Suwanpreedee R., Manuspiya H. Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. Int. J. Adhes. Adhes. 2020;102:102677. doi: 10.1016/j.ijadhadh.2020.102677. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...