Halloysite Nanotubes as an Additive to Ensure Enhanced Characteristics of Cold-Curing Epoxy Resins under Fire Conditions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LO1607
Ministry of Education, Youth and Sports of the Czech Republic under the RICE - New Technologies and Concepts for Smart Industrial Systems
SGS-2018-016 "Diagnostics and Materials in Electrical Engineering".
Student Grant Agency of the University of West Bohemia
PubMed
32825503
PubMed Central
PMC7563762
DOI
10.3390/polym12091881
PII: polym12091881
Knihovny.cz E-resources
- Keywords
- dielectric properties, epoxy-based composites, fire retardancy, halloysite nanotubes, mechanical properties, thermal properties,
- Publication type
- Journal Article MeSH
At present, the most commonly used electrical insulating materials, including cold-curing epoxy resins, are well designed for normal operating conditions. However, new generations of materials should also be capable of withstanding extreme emergency conditions, e.g., in case of fire. For this reason, this study presents the possibilities of an improved cold-curing epoxy resin using halloysite nanotubes (HNTs) to increase its operational safety. The positive effect of HNT addition is indicated mainly in terms of the suppression of thermo-oxidation processes, which has been demonstrated by the decreases in the maximum heat flow peaks as well as the specific enthalpy values during the thermal decomposition of the epoxy resin. The observed dielectric parameters of the HNT-added materials differ only slightly from those without a filler, whereas their mechanical properties strongly depend on the amount of dispersed HNTs.
See more in PubMed
Massingill J.L., Bauer R.S. Epoxy resins. In: Craver C.D., Carraher C.H.E., editors. Applied Polymer Science: 21st Century. Elsevier; Oxford, UK: 2000. pp. 393–424. DOI
Gannon J.A. History and Development of Epoxy Resins. In: Seymour R.B., Kirshenbaum G.S., editors. High Performance Polymers: Their Origin and Development. Springer; Dordrecht, The Netherlands: 1986. pp. 299–307. DOI
Precopio F.M., Cohen M., Zavist A.F. High-Temperature Plastics. In: Hausner H.H., editor. Modern Materials. Academic Press; New York, NY, USA: 1962. pp. 1–148. DOI
Ramos V.D., da Costa H.M., Soares V.L.P., Nascimento R.S.V. Hybrid composites of epoxy resin modified with carboxyl terminated butadiene acrilonitrile copolymer and fly ash microspheres. Polym. Test. 2005;24:219–226. doi: 10.1016/j.polymertesting.2004.08.007. DOI
Park S.J., Seo M.K. Element and Processing. In: Park S.J., Seo M.K., editors. Interface Science and Technology. Elsevier; Oxford, UK: 2011. pp. 431–499. DOI
Gibson G. Epoxy Resins. In: Gilbert M., editor. Brydson’s Plastics Materials. Elsevier; Oxford, UK: 2017. pp. 773–797. DOI
Maljaee H., Ghiassi B., Lourenço P.B. Effect of synergistic environmental conditions on thermal properties of a cold curing epoxy resin. Compos. B Eng. 2017;113:152–163. doi: 10.1016/j.compositesb.2017.01.027. DOI
Saif M.J., Naveed M., Zia K.M., Asif M. Pristine and σ-irradiated halloysite reinforced epoxy nanocomposites—Insight study. Radiat. Phys. Chem. 2016;127:115–121. doi: 10.1016/j.radphyschem.2016.06.015. DOI
Unnikrishnan K.P., Thachil E.T. Toughening of epoxy resins. Des. Monomers Polym. 2006;9:129–152. doi: 10.1163/156855506776382664. DOI
Frigione M., Naddeo C., Acierno D. Cold-curing epoxy resins: Aging and environmental effects. I—Thermal properties. J. Polym. Eng. 2001;21:23–51. doi: 10.1515/POLYENG.2001.21.1.23. DOI
Goda E.S., Yoon K.R., El-sayed S.H., Hong S.E. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochim. Acta. 2018;669:173–184. doi: 10.1016/j.tca.2018.09.017. DOI
Kamble R., Ghag M., Gaikawad S., Panda B. Halloysite nanotubes and applications: A review. J. Adv. Sci. Res. 2012;3:25–29.
Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals–A review. Clay Miner. 2005;40:383–426. doi: 10.1180/0009855054040180. DOI
Churchman J.G., Pasbakhsh P., Hillier S. The rise and rise of halloysite. Clay Miner. 2016;51:303–308. doi: 10.1180/claymin.2016.051.3.00. DOI
Cheng C., Song W., Zhao Q., Zhang H. Halloysite nanotubes in polymer science: Purification, characterization, modification and applications. Nanotechnol. Rev. 2020;9:323–344. doi: 10.1515/ntrev-2020-0024. DOI
Fakhrullin R.F., Lvov Y.M. Halloysite clay nanotubes for tissue engineering. Nanomedicine. 2016;11:2243–2246. doi: 10.2217/nnm-2016-0250. PubMed DOI
Lazzara G., Cavallaro G., Panchal A., Fakhrullin R.F., Stavitskaya A., Vinokurov V., Lvov Y.M. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018;35:42–50. doi: 10.1016/j.cocis.2018.01.002. DOI
Anastopoulos I., Mittal A., Usman M., Mittal J., Yu G., Núñez-Delgado A., Kornaros M. A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq. 2018;269:855–868. doi: 10.1016/j.molliq.2018.08.104. DOI
Wu Y., Zhang Y., Ju J., Yan H., Huang X., Tan Y. Advances in Halloysite nanotubes-Polysaccharide nanocomposite preparation and applications. Polymers. 2019;11:987. doi: 10.3390/polym11060987. PubMed DOI PMC
Bertolino V., Cavallaro G., Milioto S., Lazzara G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym. 2020;245:116502. doi: 10.1016/j.carbpol.2020.116502. PubMed DOI
Parisi F., Bernardini F., Cavallaro G., Mancini L., Milioto S., Prokop D., Lazzara G. Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: Thermal stability and X-ray microtomography. J. Therm. Anal. Calorim. 2020;141:981–989. doi: 10.1007/s10973-020-09637-4. DOI
Cavallaro G., Lazzara G., Lisuzzo L., Milioto S., Parisi F. Filling of mater-Bi with nanoclays to enhance the biofilm rigidity. J. Funct. Biomater. 2018;9:60. doi: 10.3390/jfb9040060. PubMed DOI PMC
Bertolino V., Cavallaro G., Milioto S., Parisi F., Lazzara G. Thermal properties of multilayer nanocomposites based on Halloysite nanotubes and biopolymers. J. Compos. Sci. 2018;2:41. doi: 10.3390/jcs2030041. DOI
Chen S., Yang Z., Wang F. Investigation on the properties of PMMA/reactive Halloysite nanocomposites based on Halloysite with double bonds. Polymers. 2018;10:919. doi: 10.3390/polym10080919. PubMed DOI PMC
Rajaei M., Kim N.K., Bickerton S., Bhattacharyya D. A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos. B Eng. 2019;165:65–74. doi: 10.1016/j.compositesb.2018.11.089. DOI
Dong Y., Lisco B., Wu H., Koo J., Krifa M. Flame retardancy and mechanical properties of ferrum ammonium phosphate-halloysite/epoxy polymer nanocomposites. J. Appl. Polym. Sci. 2015;132:41681. doi: 10.1002/app.41681. DOI
UL LLC. UL 94–Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. 6th ed. Underwriters Laboratories Inc.; Northbrook, IL, USA: 2013.
Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment Text with EEA relevance. Off. J. Eur. Union. 2011;54:L174/88. doi: 10.3000/17252555.L_2011.174.eng. DOI
Afirm Group Chemical Information Document, Flame Retardants. [(accessed on 20 May 2020)]; Available online: https://www.afirm-group.com/wp-content/uploads/2018/01/afirm_flame_retardants.pdf.
European Chemicals Agency Substances Restricted under REACH. [(accessed on 20 May 2020)]; Available online: https://echa.europa.eu/substances-restricted-under-reach.
Zhao X. In: Hallogen-Free Phosporus-Containing Flame-Retardant Epoxy Composites. Wang D.Y., Llorca C.H., editors. Technical University of Madrid; Madrid, Spain: 2017. [(accessed on 22 May 2020)]. Available online: http://oa.upm.es/45571/1/XIAOMIN_ZHAO.pdf.
Bourbigot S., Duquesne S. Fire retardant polymers: Recent developments and opportunities. J. Mater. Chem. 2007;17:2283. doi: 10.1039/b702511d. DOI
ELCHEMCo spol. s r.o, Elan-Tech® EC 141 NF . Material Safety Data Sheet According to Regulation (EC) No 1907/2006. European Parliament and of the Council; Prague, Czech Republic: 2017.
Applied Minerals, Inc. Dragonite HP, Material Datasheet of Dragonit HP. Applied Minerals, Inc.; New York, NY, USA: 2014.
Pasbakhsh P., Churchman G.J., Keeling J.L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 2013;74:47–57. doi: 10.1016/j.clay.2012.06.014. DOI
Polanský R., Kadlec P., Kolská Z., Švorčík V. Influence of dehydration on the dielectric and structural properties of organically modified montmorillonite and halloysite nanotubes. Appl. Clay Sci. 2017;147:19–27. doi: 10.1016/j.clay.2017.07.027. DOI
International Organization for Standardization . ISO 527-2:2012 Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012.
Corcione C.E., Freuli F., Frigione M. Cold-curing structural epoxy resins: Analysis of the curing reaction as a function of curing time and thickness. Materials. 2014;7:6832–6842. doi: 10.3390/ma7096832. PubMed DOI PMC
International Electrotechnical Commission . IEC 62631-3-1:2016 Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC Methods)—Volume Resistance and Volume Resistivity —General Method. International Electrotechnical Commission; Geneva, Switzerland: 2016.
International Organization for Standardization . ISO 527-1:2012 Plastics-Determination of Tensile Properties—Part 1: General Principles. International Organization for Standardization; Geneva, Switzerland: 2012.
Polanský R., Kadlec P., Slepička P., Kolská Z., Švorčík V. Testing the applicability of LDPE/HNT composites for cable core insulation. Polym. Test. 2019;78:105993. doi: 10.1016/j.polymertesting.2019.105993. DOI
Kim T., Kim S., Lee D.K., Seo B., Lim C.H.S. Treatment of HNT Surface treatment of halloysite nanotubes with sol–gel reaction for the preparation of epoxy composites. RSC Adv. 2017;7:47636–47642. doi: 10.1039/C7RA09084F. DOI
Tharmavaram M., Pandey G., Rawtani D. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci. 2018;261:82–101. doi: 10.1016/j.cis.2018.09.001. PubMed DOI
Mo H., Yang K., Li S., Jiang P. High thermal conductivity and high impact strength of epoxy nanodielectrics with functionalized halloysite nanotubes. RSC Adv. 2016;6:69569–69579. doi: 10.1039/C6RA06717D. DOI
Elantas Camattini, S.P.A. Product Information: EC 141 NF/W 242. Elantas Camattini, S.P.A.; Collecchio, Italy: 2009.
Kandola B.K., Deli D. Flame-retardant thermoset nanocomposites for engineering applications. In: Papaspyrides C.D., Kiliaris P., editors. Polymer Green Flame Retardants. Elsevier; Oxford, UK: 2014. pp. 503–549. DOI
Wang Q., Shi W. Kinetics study of thermal decomposition of epoxy resins containing flame retardant components. Polym. Degrad. Stab. 2006;91:1747–1754. doi: 10.1016/j.polymdegradstab.2005.11.018. DOI
Ouyang J., Zhou Z., Zhang Y., Yang H. High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment. Appl. Clay Sci. 2014;101:16–22. doi: 10.1016/j.clay.2014.08.010. DOI
Vahabi H., Saeb M.R., Formela K., Cuesta J.M.L. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Prog. Org. Coat. 2018;119:8–14. doi: 10.1016/j.porgcoat.2018.02.005. DOI
Zhang Z., Xu W., Yuan L., Guan Q., Liang G., Gu A. Flame-retardant cyanate ester resin with suppressed toxic volatiles based on environmentally friendly halloysite nanotube/graphene oxide hybrid. J. Appl. Polym. Sci. 2018;135:46587. doi: 10.1002/app.46587. DOI
Zou C., Fu M., Fothergill J.C., Rowe S.W. Influence of absorbed water on the dielectric properties and glass-transition temperature of silica-filled epoxy nanocomposites; Proceedings of the 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP); Kansas City, MI, USA. 15–18 October 2006; DOI
Sharp N., Li C.H., Strachan A., Adams D., Pipes R.B. Effects of water on epoxy cure kinetics and glass transition temperature utilizing molecular dynamics simulations. J. Polym. Sci. Part B Polym. Phys. 2017;55:1150–1159. doi: 10.1002/polb.24357. DOI
Hexion, Responsible Chemistry Epoxy Resins, Curing Agents and Catalysts for Electrical Castings. [(accessed on 22 May 2020)]; Available online: https://www.hexion.com/en-gb/applications/electrical-electronics/electrical-castings.
Lettieri M., Frigione M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive. Constr. Build. Mater. 2012;30:753–760. doi: 10.1016/j.conbuildmat.2011.12.077. DOI
Lettieri M., Frigione M. Natural and artificial weathering effects on cold-cured epoxy resins. J. Appl. Polym. Sci. 2011;119:1635–1645. doi: 10.1002/app.32835. DOI
Lu H., Nutt S. Enthalpy Relaxation of Layered Silicate-Epoxy Nanocomposites. Macromol. Chem. Phys. 2003;204:1832–1841. doi: 10.1002/macp.200350046. DOI
Morancho J.M., Salla J.M. Relaxation in partially cured samples of an epoxy resin and of the same resin modified with a carboxyl-terminated rubber. Polymer. 1999;40:2821–2828. doi: 10.1016/S0032-3861(98)00467-4. DOI
Chena C.H., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos. Part A Appl. Sci. 2019;118:67–74. doi: 10.1016/j.compositesa.2018.12.019. DOI
Shen D., Zhan Z., Liu Z., Cao Y., Zhou L., Liu Y., Dai W., Nishimura K., Li C.H., Lin C.H., et al. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 2017;7:2606. doi: 10.1038/s41598-017-02929-0. PubMed DOI PMC
Fu Y.-X., He Z.-X., Mo D.-C.H., Lu S.-S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014;66:493–498. doi: 10.1016/j.applthermaleng.2014.02.044. DOI
Tsekmes I.A., Kochetov R., Morshuis P.H.F., Smit J.J., Iizuka T., Tatsumi K., Tanaka T. How different fillers affect the thermal conductivity of epoxy composites; Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena; Des Moines, IA, USA. 19–22 October 2014; DOI
Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005;12:914–928. doi: 10.1109/TDEI.2005.1522186. DOI
Chen G., Li S., Zhong L. Space charge in nanodielectrics and its impact on electrical performance; Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM); Sydney, Australia. 19–22 July 2015; DOI
Zhao H., Li R.K.Y. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008;39:602–611. doi: 10.1016/j.compositesa.2007.07.006. DOI
Zou C.H., Fothergill J.C., Rowe S.W. The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008;15:106–117. doi: 10.1109/T-DEI.2008.4446741. DOI
Reid J.D., Lawrence W.H., Buck R.P. Dielectric properties of an epoxy resin and its composite I. Moisture effects on dipole relaxation. J. Appl. Polym. Sci. 1986;31:1771–1784. doi: 10.1002/app.1986.070310622. DOI
Carroll B., Cheng S., Sokolov A.P. Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy. Macromolecules. 2017;50:6149–6163. doi: 10.1021/acs.macromol.7b00825. DOI
Fragiadakis D., Pissis P., Bokobza L. Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer. 2005;46:6001–6008. doi: 10.1016/j.polymer.2005.05.080. DOI
Kornmann X., Thomann R., Mülhaupt R., Finter J., Berglund L. Synthesis of amine-cured, epoxy-layered silicate nanocomposites: The influence of the silicate surface modification on the properties. J. Appl. Polym. Sci. 2002;86:2643–2652. doi: 10.1002/app.11279. DOI
Razak S.I.A., Muhamad I.I., Sharif N.F.A., Nayan N.H.M., Rahmat A.R., Yahya R.Y. Mechanical and Electrical Properties of Electrically Conductive Nanocomposites of Epoxy/Polyaniline-Coated Halloysite Nanotubes. [(accessed on 22 May 2020)];Dig. J. Nanomater. Bios. 2015 10:377–384. Available online: http://chalcogen.ro/377_Razak.pdf.
Wang K., Chen L., Wu J., Toh M.L., He C.H., Yee A.F. Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules. 2005;38:788–800. doi: 10.1021/ma048465n. DOI
Saif M.J., Asif H.M., Naveed M. Properties and modification methods of halloysite nanotubes: A state-of-the-art review. J. Chil. Chem. Soc. 2018;63:4109–4125. doi: 10.4067/s0717-97072018000304109. DOI
Gaaz T.S., Sulong A.B., Kadhum A.A.H., Nassir M.H., Al-Amiery A.A. Impact of sulfuric acid treatment of Halloysite on physico-chemic property modification. Materials. 2016;9:620. doi: 10.3390/ma9080620. PubMed DOI PMC
Vahedi V., Pasbakhsh P. Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polym. Test. 2014;39:101–114. doi: 10.1016/j.polymertesting.2014.07.017. DOI
Ashcroft W.R. Curing agents for epoxy resins. In: Ellis B., editor. Chemistry and Technology of Epoxy Resins. Springer; Dordrecht, The Netherlands: 1993. pp. 37–71. DOI
Deng S., Zhang J., Ye J., Wu J. Toughening epoxies with halloysite nanotubes. Polymer. 2008;49:5119–5127. doi: 10.1016/j.polymer.2008.09.027. DOI
Ratna D., Manoj N.R., Chandrasekhar L., Chakraborty B.C. Novel epoxy compositions for vibration damping applications. Polym. Adv. Technol. 2004;15:583–586. doi: 10.1002/pat.513. DOI