Dynamics of Rex3 in the genomes of endangered Iberian Leuciscinae (Teleostei, Cyprinidae) and their natural hybrids

. 2015 ; 8 () : 81. [epub] 20151026

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26512297

BACKGROUND: Iberian Leuciscinae are greatly diverse comprising taxa of hybrid origin. With highly conservative karyotypes, Iberian Chondrostoma s.l. have recently demonstrated sub-chromosomal differentiation and rapid genome restructuring in natural hybrids, which was confirmed by ribosomal DNA (rDNA) transposition and/or multiplication. To understand the role of repetitive DNAs in the differentiation of their genomes, a genetic and molecular cytogenetic survey was conducted in Achondrostoma oligolepis, Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. polylepis, Squalius pyrenaicus and hybrids between A. oligolepis x (P. duriense/P. polylepis), representing 'alburnine', chondrostomine and Squalius lineages. RESULTS: Partial Rex3 sequences evidenced high sequence homology among Leuciscinae (≥98 %) and different fish families (80-95 %) proposing a relatively recent activity of these elements in the species inspected. Low nucleotide substitution rates (<20 %) and intact ORFs suggests that Rex3 may in fact be active in these genomes. The chromosomal distribution of Rex3 retroelement was found highly concentrated at pericentromeric and moderately at subtelomeric blocks, co-localizing with 5S rDNA loci, and correlating with blocks of heterochromatin and C0t-1 DNA. This accumulation was evident in at least 10 chromosome pairs, a pattern that seemed to be shared among the different species, likely pre-dating their divergence. Nevertheless, species-specific clusters were detected in I. lusitanicum, P. duriense, P. polylepis and S. pyrenaicus demonstrating rapid and independent differentiation. Natural hybrids followed the same patterns of accumulation and association with repetitive sequences. An increased number of Rex3 clusters now associating also with translocated 45S rDNA clusters vouched for other genomic rearrangements in hybrids. Rex3 sequence phylogeny did not agree with its hosts' phylogeny but the observed distribution pattern is congruent with an evolutionary tendency to protect its activity, a robust regulatory system and/or events of horizontal transfer. CONCLUSIONS: This is the first report directed at retroelement physical mapping in Cyprinidae. It helped outlining conceivable ancestral homologies and recognizing retrotransposon activation in hybrids, being possibly associated with genome diversification within the subfamily. The extensive diversity of Iberian Leuciscinae makes them excellent candidates to explore the processes and mechanisms behind the great plasticity distinguishing vertebrate genomes.

Zobrazit více v PubMed

Perea S, Böhme M, Zupančič P, Freyhof J, Šanda R, Ozuluğ M, Abdoli A, Doadrio I. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol. 2010;10:265. doi: 10.1186/1471-2148-10-265. PubMed DOI PMC

Filipe AF, Araújo MB, Doadrio I, Angermeier PL, Collares-Pereira MJ. Biogeography of Iberian freshwater fishes revisited: the roles of historical versus contemporary constraints. J Biogeogr. 2009;36:2096–110. doi: 10.1111/j.1365-2699.2009.02154.x. DOI

Leunda PM, Elvira B, Ribeiro F, Miranda R, Oscoz J, Alves MJ, Collares-Pereira MJ. International standardization of common names for Iberian endemic freshwater fishes. Limnetica. 2009;28:189–202.

Aboim M, Mavárez J, Bernatchez L, Coelho M. Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. J Evol Biol. 2010;23:817–28. doi: 10.1111/j.1420-9101.2010.01953.x. PubMed DOI

Collares-Pereira MJ, Coelho MM. Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. J Fish Biol. 2010;76:707–15. doi: 10.1111/j.1095-8649.2009.02460.x. PubMed DOI

Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes): a review. Folia Zool. 1995;44:193–214.

Ráb P, Rábová M, Pereira CS, Collares-Pereira MJ, Pelikanová S. Chromosome studies of European cyprinid fishes: interspecific homology of leuciscine cytotaxonomic marker the largest subtelocentric chromosome pair as revealed by cross-species painting. Chromosome Res. 2008;16:863–73. doi: 10.1007/s10577-008-1245-3. PubMed DOI

Pereira C, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae) Genetica. 2012;140:485–95. doi: 10.1007/s10709-013-9697-6. PubMed DOI

Rossi AR, Milana V, Hett AK, Tancioni L. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica. 2012;140:469–76. doi: 10.1007/s10709-012-9695-0. PubMed DOI

Pereira C, Ráb P, Collares-Pereira MJ. Chromosomes of Iberian Leuciscinae (Cyprinidae) revisited: evidence of genome restructuring in homoploid hybrids using dual-color FISH and CGH. Cytogenet Genome Res. 2013;141:143–52. doi: 10.1159/000354582. PubMed DOI

Pereira C, Aboim MA, Ráb P, Collares-Pereira MJ. Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae) Heredity. 2014;112:343–50. doi: 10.1038/hdy.2013.110. PubMed DOI PMC

Fontdevila A. Hybrid genome evolution by transposition. Cytogenet Genome Res. 2005;110:49–55. doi: 10.1159/000084937. PubMed DOI

Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res. 2008;16:203–15. doi: 10.1007/s10577-007-1202-6. PubMed DOI

Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome’s selfish architects. Biol Direct. 2011;6:19. doi: 10.1186/1745-6150-6-19. PubMed DOI PMC

Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res. 2013;140:295–311. doi: 10.1159/000352069. PubMed DOI

Volff JN, Körting C, Sweeney K, Schartl M. The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol. 1999;16:1427–38. doi: 10.1093/oxfordjournals.molbev.a026055. PubMed DOI

Volff JN, Körting C, Schartl M. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol. 2000;17:1673–84. doi: 10.1093/oxfordjournals.molbev.a026266. PubMed DOI

Volff JN, Körting C, Meyer A, Schartl M. Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol. 2001;18:427–31. doi: 10.1093/oxfordjournals.molbev.a003819. PubMed DOI

Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010;10:271. PubMed PMC

Gross MC, Schneider CH, Valente GT, Porto JIR, Martins C, Feldberg E. Comparative cytogenetic analysis of the genus Symphysodon (discus fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet Genome Res. 2010;127:43–53. doi: 10.1159/000279443. PubMed DOI

Schneider CH, Gross MC, Terencio ML, Carmo EJ, Martins C, Feldberg E. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol Biol. 2013;13:152. doi: 10.1186/1471-2148-13-152. PubMed DOI PMC

Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, Rábová M, Ráb P. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC

Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosphila virilis. PNAS. 1995;95:8050–4. doi: 10.1073/pnas.92.17.8050. PubMed DOI PMC

O’Neill RJW, O’Neill MJ, Graves JAM. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998;393:68–72. doi: 10.1038/29985. PubMed DOI

Abbott RJ, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins CD, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–46. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Collares-Pereira MJ, Moreira da Costa L. Intraspecific and interspecific genome size variation in Iberian Cyprinidae and the problem of diploidy and polyploidy, with review of genome sizes within the family. Folia Zool. 1999;48:61–76.

Zhang X, Eickbush MT, Eickbush TH. Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics. 2008;180:1617–26. doi: 10.1534/genetics.108.093716. PubMed DOI PMC

Ferreira IA, Martins C. Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron. 2008;39:411–8. doi: 10.1016/j.micron.2007.02.010. PubMed DOI

Ferreira DC, Porto-Foresti F, Oliveira C, Foresti F. Transposable elements as a potential source for understanding the fish genome. Mobile Genet Elem. 2011;1:112–7. doi: 10.4161/mge.1.2.16731. PubMed DOI PMC

Collares-Pereira MJ, Biléu RI, Rodrigues EM. Leuciscus (Pisces, Cyprinidae) karyotypes: transect of Portuguese populations. Genet Mol Biol. 1998;21:1–12. doi: 10.1590/S1415-47571998000100011. DOI

Inácio A, Pinho J, Pereira PM, Comai L, Coelho MM. Global analysis of the small RNA transcriptome in different ploidies and genomic combinations of a vertebrate complex – the Squalius alburnoides. PloS One. 2012;7:e41158. doi: 10.1371/journal.pone.0041158. PubMed DOI PMC

Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75:304–6. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric positions on chromosomes. Hereditas. 1964;52:201–20. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Basic Local Alignment Search Tool (BLAST) [http://blast.ncbi.nlm.nih.gov/blast]. Accessed 25/03/2015.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2014;42 (Database issue):D32-37. PubMed PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. doi: 10.1007/BF01731581. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...