Using Species Groups to Approach the Large and Taxonomically Unresolved Freshwater Fish Family Nemacheilidae (Teleostei: Cypriniformes)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
206/08/0637
Czech Science Foundation
19-18453S
Czech Science Foundation
2901119
Charles University
PubMed
35205042
PubMed Central
PMC8869502
DOI
10.3390/biology11020175
PII: biology11020175
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, evolutionary history, freshwater fish, molecular marker, pigmentation pattern, systematics,
- Publikační typ
- časopisecké články MeSH
Large animal families with unresolved taxonomy are notoriously difficult to handle with respect to their biodiversity, systematics, and evolutionary history. We approach a large and taxonomically unresolved family of freshwater fishes (Nemacheilidae, >600 species) by proposing, on the basis of morphologic data, a species group within the family and study its phylogeny with conclusions regarding its diversity, taxonomy, and biogeographic history. Phylogenetic analyses of two mitochondrial and three nuclear genes of 139 specimens, representing about 46 species (17 candidate species from the proposed species-group, plus 29 comparative species), revealed that the proposed species group does not form a distinct monophyletic lineage, but that the candidate and comparative species mixed in three different lineages. However, the results revealed more than 20% of undescribed species within the ingroup and showed that species do not cluster according to the presently recognised genera. At least one of the genetic clades shows signs of an eastward range expansion during the second half of Miocene from north India via Myanmar into Laos, western China, and western Thailand. We conclude that the approach of picking monophyletic lineages to study biodiversity, systematics, and evolutionary history helps to open the door to large animal families.
Zobrazit více v PubMed
Wägele J.-W. Foundations of Phylogenetic Systematics. 2nd ed. Pfeil; München, Germany: 2005. 365p
Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 2003;18:70–74. doi: 10.1016/S0169-5347(02)00041-1. DOI
Hebert P.D.N., Ratnasingham S., De Waard J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Boil. Sci. 2003;270((Suppl. S1)):S96–S99. doi: 10.1098/rsbl.2003.0025. PubMed DOI PMC
De Queiroz K. Species Concepts and Species Delimitation. Syst. Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI
Wiens J.J. Species Delimitation: New Approaches for Discovering Diversity. Syst. Biol. 2007;56:875–878. doi: 10.1080/10635150701748506. PubMed DOI
Duminil J., Di Michele M. Plant species delimitation: A comparison of morphological and molecular markers. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2009;143:528–542. doi: 10.1080/11263500902722964. DOI
Lukhtanov V.A. Species Delimitation and Analysis of Cryptic Species Diversity in the XXI Century. Èntomol. Rev. 2019;99:463–472. doi: 10.1134/S0013873819040055. DOI
Kartavtsev Y.P. Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals. 2021;11:1473. doi: 10.3390/ani11051473. PubMed DOI PMC
Hillis D.M., Wiens J.J. Molecules versus morphology in systematics: Conflicts, artifacts, and misconceptions. In: Wiens J.J., editor. Phylogenetic Analysis of Morphological Data. Smithsonian Institution Press; Washington, DC, USA: 2000. pp. 1–19.
Pisani D., Benton M.J., Wilkinson M. Congruence of Morphological and Molecular Phylogenies. Acta Biotheor. 2007;55:269–281. doi: 10.1007/s10441-007-9015-8. PubMed DOI
Friedheim S. Comparison of Species Identification Methods: DNA Barcoding versus Morphological Taxonomy. Mānoa Horiz. 2016;1:78–86.
Lee M.S.Y. Uninformative Characters and Apparent Conflict Between Molecules and Morphology. Mol. Biol. Evol. 2001;18:676–680. doi: 10.1093/oxfordjournals.molbev.a003848. PubMed DOI
Giannini N.P., Simmons N.B. Conflict and congruence in a combined DNA-morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae) Cladistics. 2005;21:411–437. doi: 10.1111/j.1096-0031.2005.00083.x. PubMed DOI
Pollet M., Germann C., Tanner S., Bernasconi M.V. Hypotheses from mitochondrial DNA: Congruence and conflict between DNA sequences and morphology in Dolichopodinae systematics (Diptera:Dolichopodidae) Invertebr. Syst. 2010;24:32–50. doi: 10.1071/IS09040. DOI
Bazsalovicsová E., Králová-Hromadová I., Brabec J., Hanzelová V., Oros M., Scholz T. Conflict between morphology and molecular data: A case of the genus Caryophyllaeus (Cestoda: Caryophyllidea), monozoic tapeworms of cyprinid fishes. Folia Parasitol. 2014;61:347–354. doi: 10.14411/fp.2014.035. PubMed DOI
Decru E., Moelants T., De Gelas K., Vreven E., Verheyen E., Snoeks J. Taxonomic challenges in freshwater fishes: A mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin. Mol. Ecol. Resour. 2016;16:342–352. doi: 10.1111/1755-0998.12445. PubMed DOI
lechtová V., Musilová Z., Kottelat M., Tan H.H., Bohlen J. One northward, one southward: Contrasting biogeography of two benthic freshwater fish species across Southeast Asia. Mol. Phyl. Evol. 2021;161:107139. doi: 10.1016/j.ympev.2021.107139. PubMed DOI
Lewis R.L., Beckenbach A.T., Mooers A. The phylogeny of the subgroups within the melanogaster species group: Likelihood tests on COI and COII sequences and a Bayesian estimate of phylogeny. Mol. Phylogenetics Evol. 2005;37:15–24. doi: 10.1016/j.ympev.2005.02.018. PubMed DOI
Katoh T., Nakaya D., Tamura K., Aotsuka T. Phylogeny of the Drosophila immigrans Species Group (Diptera: Drosophilidae) Based on Adh and Gpdh Sequences. Zool. Sci. 2007;24:913–921. doi: 10.2108/zsj.24.913. PubMed DOI
Conner W.R., Delaney E.K., Bronski M.J., Ginsberg P.S., Wheeler T.B., Richardson K.M., Peckenpaugh B., Kim K.J., Watada M., Hoffmann A.A., et al. A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Mol. Phylogenetics Evol. 2021;158:107061. doi: 10.1016/j.ympev.2020.107061. PubMed DOI PMC
Bănărescu P. Zoogeography of Fresh Waters. Volume 2. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. AULA-Verlag; Wiesbaden, Germany: 1992.
Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Publications Kottelat; Cornol, Switzerland: 2007. 646p
Kottelat M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei) Raff. Bull. Zool. 2012;26:1–99.
Bohlen J., Dvořák T., Šlechta V., Šlechtová V. Sea water shaping the freshwater biota: Hidden diversity and biogeographic history in the Paracanthocobitis zonalternans species complex (Teleostei: Nemacheilidae) in western Southeast Asia. Mol. Phylogenetics Evol. 2020;148:106806. doi: 10.1016/j.ympev.2020.106806. PubMed DOI
Bohlen J., Dvořák T., Šlechta V., Šlechtová V. Resolving an unnoticed diversity within the Schistura robertsi species complex (Teleostei: Nemacheilidae) using molecules and morphology. Mol. Phylogenetics Evol. 2020;151:106894. doi: 10.1016/j.ympev.2020.106894. PubMed DOI
Bănărescu P.M., Nalbant T.T. A generical classification of Nemacheilinae with description of two new genera (Teleostei: Cypriniformes: Cobitidae) Trav. Du Muséum D’histoire Nat. Grigore Antipa. 1995;35:429–495.
Kottelat M. Indochinese Nemacheilines, a Revision of Nemacheiline Loaches (Pisces: Cypriniformes) of Thailand, Burma, Laos, Cambodia and Southern Vietnam. Pfeil; München, Germany: 1990. 262p
Kottelat M. Mustura celata, a new genus and species of loaches from northern Myanmar, and an overview of Physoschistura and related taxa (Teleostei: Nemacheilidae) Ichthyol. Explor. Freshw. 2018;28:1–26.
Kottelat M. Rhyacoschistura larreci, a new genus and species of loach from Laos and redescription of R. suber (Teleostei: Nemacheilidae) Zootaxa. 2019;4612:151–170. doi: 10.11646/zootaxa.4612.2.1. PubMed DOI
Bohlen J., Šlechtová V. A new genus and two new species of loaches (Teleostei: Nemacheilidae) from Myanmar. Ichthyol. Explor. Freshw. 2011;22:1–10.
Grant S. A new subgenus of Acanthocobitis Peters, 1861 (Teleostei: Nemacheilidae) Ichthyofile. 2007;2:1–9.
Prokofiev A.M. Problems of the classification and phylogeny of nemacheiline loaches of the group lacking the pre ethmoid I (Cypriniformes: Balitoridae: Nemacheilinae) J. Ichthyol. 2009;49:874. doi: 10.1134/S0032945209100051. DOI
Tang Q., Liu H., Mayden R., Xiong B. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes) Mol. Phylogenetics Evol. 2006;39:347–357. doi: 10.1016/j.ympev.2005.08.007. PubMed DOI
Liu S.-Q., Mayden R.L., Zhang J.-B., Yu D., Tang Q.-Y., Deng X., Liu H.-Z. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene. 2012;508:60–72. doi: 10.1016/j.gene.2012.07.040. PubMed DOI
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Xiao N., Zhou J., Deng H., Wen H. A new blind species of the cave genus Oreonectes from Guizhou, China (Nemacheilinae) ZooKeys. 2016;637:47–59. doi: 10.3897/zookeys.637.10202. PubMed DOI PMC
Sgouros K., Page L.M., Orlofske S.A., Jadin R.C. A revised molecular phylogeny reveals polyphyly in Schistura (Teleostei: Cypriniformes: Nemacheilidae) Zootaxa. 2019;4559:349. doi: 10.11646/zootaxa.4559.2.8. PubMed DOI
Sambrook J., Fritschi E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York, NY, USA: 1989.
Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N. DNA Barcoding Australia’s fish species. Philos. Trans. R. Soc. Lon.d B Biol. Sci. 2005;360:1847–1857. doi: 10.1098/rstb.2005.1716. PubMed DOI PMC
Šlechtová V., Bohlen J., Freyhof J., Ráb P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol. Phylogenetics Evol. 2006;39:529–541. doi: 10.1016/j.ympev.2005.09.018. PubMed DOI
Chen W.-J., Miya M., Saitoh K., Mayden R.L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene. 2008;423:125–134. doi: 10.1016/j.gene.2008.07.016. PubMed DOI
Quenouille B., Bermingham E., Planes S. Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol. Phylogenetics Evol. 2004;31:66–88. doi: 10.1016/S1055-7903(03)00278-1. PubMed DOI
Šlechtová V., Bohlen J., Tan H.H. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol. Phylogenetics Evol. 2007;44:1358–1365. doi: 10.1016/j.ympev.2007.02.019. PubMed DOI
Li C., Ortí G., Zhang G., Lu G. A practical approach to phylogenomics: The phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 2007;7:44. doi: 10.1186/1471-2148-7-44. PubMed DOI PMC
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999;41:95–98.
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X Version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Zhang D., Gao F., Jakovlić I., Zou H., Zhang J., Li W.X., Wang G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020;20:348–355. doi: 10.1111/1755-0998.13096. PubMed DOI
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; New Orleans, LA, USA: IEEE; 2010. pp. 1–8. DOI
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Puillandre N., Lambert A., Brouillet S., Achaz G. ABGD, automaticbarcode gap discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI
Puillandre N., Brouillet S., Achaz G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2020;21:609–620. doi: 10.1111/1755-0998.13281. PubMed DOI
Pons J., Barraclough T.G., Gómez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun S., Sumlin W.D., Vogler A.P. Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI
Zhang J., Kapli P., Pavlidis P., Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC
Ogilvie J.E., Griffin S.R., Gezon Z.J., Inouye B.D., Underwood N., Inouye D.W., Irwin R.E. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 2017;20:1507–1515. doi: 10.1111/ele.12854. PubMed DOI
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Rambaut A., Drummond A.J. TreeAnnotator Version 1.6.1. 2010. [(accessed on 10 January 2022)]. Available online: http://beast.bio.ed.ac.uk/TreeAnnotator.
Huson D.H., Scornavacca C. Dendroscope 3- An interactive viewer for rooted phylogenetic trees and networks. Syst. Biol. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. PubMed DOI
Prokofiev A.M. Redescription of a fossil loach Triplophysa opinata (Yakowlew, 1959) from the Miocene of Kirgizia (Balitoridae: Nemacheilinae) J. Ichthyol. 2007;47:26–31. doi: 10.1134/S0032945207010031. DOI
Böhme M., Ilg A. FosFARbase. 2003. [(accessed on 23. October 2021)]. Available online: www.wahre-staerke.com/
Clark M.K., Schoenbohm L.M., Royden L.H., Whipple K.X., Burchfield B.C., Zhang X., Tang W., Wang E., Chen L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale draining patterns. Tectonics. 2004;23:TC1006. doi: 10.1029/2002TC001402. DOI
Ritchie A.M., Lo N., Ho S.Y.W. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling. Syst. Biol. 2017;66:413–425. doi: 10.1093/sysbio/syw095. PubMed DOI
Rambaut A. Figtree version 1.4.4. 2019. [(accessed on 10 January 2022)]. Available online: http://tree.bio.ed.ac.uk/software/figtree.
Egger B., Koblmüller S., Sturmbauer C., Sefc K.M. Nuclear and mitochondrial datareveal different evolutionary processes in the Lake Tanganyika cichlid genusTropheus. BMC Evol. Biol. 2007;7:137. doi: 10.1186/1471-2148-7-137. PubMed DOI PMC
Van Steenberge M., Raeymaekers J.A.M., Hablützel P.I., Vanhove M.P.M., Koblmüller S., Snoeks J. Delineating species along shifting shorelines: Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika. Front. Zool. 2018;15:42. doi: 10.1186/s12983-018-0287-4. PubMed DOI PMC
Singer R.A., Pfeiffer J.M., Page L.M. A revision of the Paracanthocobitis zonalternans (Cypriniformes: Nemacheilidae) species complex with descriptions of three new species. Zootaxa. 2017;4324:85–107. doi: 10.11646/zootaxa.4324.1.5. DOI
Abell R., Thieme M., Revenga C., Kottelat M., Bogutskaya N., Coad B., Mandrak N., Balderas S.C., Bussing W. Freshwater ecoregions of the world: A new map ofbiogeographic units for freshwater biodiversity conservation. Bioscience. 2008;58:403–414. doi: 10.1641/B580507. DOI
Morley C.K., Naing T.T., Searle M., Robinson S.A. Structural and tectonic development of the Indo-Burma ranges. Earth-Sci. Rev. 2020;200:102992. doi: 10.1016/j.earscirev.2019.102992. DOI
Bolotov I.N., Aksenova O.V., Bakken T., Glasby C.J., Gofarov M., Kondakov A.V., Konopleva E.S., Lopes-Lima M., Lyubas A.A., Wang Y., et al. Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nat. Commun. 2018;9:2882. doi: 10.1038/s41467-018-05133-4. PubMed DOI PMC
Bolotov I.N., Konopleva E.S., Vikhrev I.V., Gofarov M.Y., Lopes-Lima M., Bogan A.E., Lunn Z., Chan N., Win T., Aksenova O.V., et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 2020;10:6616. doi: 10.1038/s41598-020-63612-5. PubMed DOI PMC
Kottelat M., Baird I.G., Kullander S.O., Ng H.H., Parenti L.R., Rainboth W.J., Vidthayanon C. The status and distribution of freshwater fishes of Indo-Burma. In: Allen D.J., Darwall W.R.T., Smith K.G., editors. The Status and Distribution of Freshwater Biodiversity in Indo-Burma. IUCN; Cambridge, UK: Gland, Switzerland: 2012. pp. 50–77. Chapter 3.
Bohlen J., Šlechtová V., Udomritthiruj K. Schistura hypsiura, a new species of loach (Cobitoidea: Nemacheilidae) from South-West Myanmar. Raff. Bull. Zool. 2014;62:21–27.
Kullander S.O. Taxonomy of chain Danio, an Indo-Myanmar species assemblage, with descriptions of four new species (Teleostei: Cyprinidae) Ichthyol. Explor. Freshw. 2015;25:357–380.
Barman A.S., Singh M., Pandey P.K. DNA barcoding and genetic diversity analyses of fishes of Kaladan River of Indo-Myanmar biodiversity hotspot. Mitochondrial DNA Part A. 2018;29:367–378. doi: 10.1080/24701394.2017.1285290. PubMed DOI
Bracciali L., Najman Y., Parrish R.R., Akhter S.H., Millar I. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya. Earth Planet. Sci. Lett. 2015;415:25–37. doi: 10.1016/j.epsl.2015.01.022. DOI
Licht A., Reisberg L., France-Lanord C., Fontain C., Soe A.N., Jaeger J.J. Cenozoic evolution of the central Myanmar drainage system: Insights from sediment provenance in the Minbu Sub-Basin. Basin Res. 2016;28:237–251. doi: 10.1111/bre.12108. DOI
Zhang P., Najman Y., Mei L., Millar I., Sobel E.R., Carter A., Barfod D., Dhuime B., Garzanti E., Govin G., et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics. Earth-Sci. Rev. 2019;192:601–630. doi: 10.1016/j.earscirev.2019.02.003. DOI
Haq B.U., Hardenbol J., Vail P.R. Chronology of Fluctuating Sea Levels Since the Triassic. Science. 1987;235:1156–1167. doi: 10.1126/science.235.4793.1156. PubMed DOI
Shih H.-T., Kamrani E., Davie P.J.F., Liu M.-Y. Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea species-complex. Hydrobiologia. 2009;635:373–382. doi: 10.1007/s10750-009-9930-6. DOI
Sang T., Zhong Y. Testing hybridization hypotheses based on incongruent gene trees. Syst. Biol. 2000;49:422–434. doi: 10.1080/10635159950127321. PubMed DOI
Gonçalves H., Martínez-Solano I., Ferrand N., García-París M. Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): Deep coalescence or ancestral hybridization? Mol. Phylogenetics Evol. 2007;44:494–500. doi: 10.1016/j.ympev.2007.03.001. PubMed DOI
Funk D.J., Omland K.E. Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2003;34:397–423. doi: 10.1146/annurev.ecolsys.34.011802.132421. DOI
McCracken K.G., Sorenson M.D. Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? Syst. Biol. 2005;54:35–55. doi: 10.1080/10635150590910249. PubMed DOI
Kottelat M. Fishes of the Xe Kong Drainage in Laos, Especially from the Xe Kaman. Project Report. 2011. [(accessed on 16 January 2022)]. pp. 1–19. Available online: https://wwf.panda.org/wwf_news/?202388/Fishes-of-the-Xe-Kong-drainage-in-Laos.
Pentinsaari M., Vos R., Mutanen M. Algorithmic single-locus species delimitation: Effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Mol. Ecol. Resour. 2017;17:393–404. doi: 10.1111/1755-0998.12557. PubMed DOI
Renner M.A.M., Heslewood M.M., Patzak S.D.F., Schäfer-Verwimp A., Heinrichs J. By how much do we underestimate species diversity of liverworts using morphological evidence? An example from Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida) Mol. Phylogenetics Evol. 2017;107:576–593. doi: 10.1016/j.ympev.2016.12.018. PubMed DOI