Using Species Groups to Approach the Large and Taxonomically Unresolved Freshwater Fish Family Nemacheilidae (Teleostei: Cypriniformes)

. 2022 Jan 22 ; 11 (2) : . [epub] 20220122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35205042

Grantová podpora
206/08/0637 Czech Science Foundation
19-18453S Czech Science Foundation
2901119 Charles University

Large animal families with unresolved taxonomy are notoriously difficult to handle with respect to their biodiversity, systematics, and evolutionary history. We approach a large and taxonomically unresolved family of freshwater fishes (Nemacheilidae, >600 species) by proposing, on the basis of morphologic data, a species group within the family and study its phylogeny with conclusions regarding its diversity, taxonomy, and biogeographic history. Phylogenetic analyses of two mitochondrial and three nuclear genes of 139 specimens, representing about 46 species (17 candidate species from the proposed species-group, plus 29 comparative species), revealed that the proposed species group does not form a distinct monophyletic lineage, but that the candidate and comparative species mixed in three different lineages. However, the results revealed more than 20% of undescribed species within the ingroup and showed that species do not cluster according to the presently recognised genera. At least one of the genetic clades shows signs of an eastward range expansion during the second half of Miocene from north India via Myanmar into Laos, western China, and western Thailand. We conclude that the approach of picking monophyletic lineages to study biodiversity, systematics, and evolutionary history helps to open the door to large animal families.

Zobrazit více v PubMed

Wägele J.-W. Foundations of Phylogenetic Systematics. 2nd ed. Pfeil; München, Germany: 2005. 365p

Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 2003;18:70–74. doi: 10.1016/S0169-5347(02)00041-1. DOI

Hebert P.D.N., Ratnasingham S., De Waard J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Boil. Sci. 2003;270((Suppl. S1)):S96–S99. doi: 10.1098/rsbl.2003.0025. PubMed DOI PMC

De Queiroz K. Species Concepts and Species Delimitation. Syst. Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI

Wiens J.J. Species Delimitation: New Approaches for Discovering Diversity. Syst. Biol. 2007;56:875–878. doi: 10.1080/10635150701748506. PubMed DOI

Duminil J., Di Michele M. Plant species delimitation: A comparison of morphological and molecular markers. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2009;143:528–542. doi: 10.1080/11263500902722964. DOI

Lukhtanov V.A. Species Delimitation and Analysis of Cryptic Species Diversity in the XXI Century. Èntomol. Rev. 2019;99:463–472. doi: 10.1134/S0013873819040055. DOI

Kartavtsev Y.P. Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals. 2021;11:1473. doi: 10.3390/ani11051473. PubMed DOI PMC

Hillis D.M., Wiens J.J. Molecules versus morphology in systematics: Conflicts, artifacts, and misconceptions. In: Wiens J.J., editor. Phylogenetic Analysis of Morphological Data. Smithsonian Institution Press; Washington, DC, USA: 2000. pp. 1–19.

Pisani D., Benton M.J., Wilkinson M. Congruence of Morphological and Molecular Phylogenies. Acta Biotheor. 2007;55:269–281. doi: 10.1007/s10441-007-9015-8. PubMed DOI

Friedheim S. Comparison of Species Identification Methods: DNA Barcoding versus Morphological Taxonomy. Mānoa Horiz. 2016;1:78–86.

Lee M.S.Y. Uninformative Characters and Apparent Conflict Between Molecules and Morphology. Mol. Biol. Evol. 2001;18:676–680. doi: 10.1093/oxfordjournals.molbev.a003848. PubMed DOI

Giannini N.P., Simmons N.B. Conflict and congruence in a combined DNA-morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae) Cladistics. 2005;21:411–437. doi: 10.1111/j.1096-0031.2005.00083.x. PubMed DOI

Pollet M., Germann C., Tanner S., Bernasconi M.V. Hypotheses from mitochondrial DNA: Congruence and conflict between DNA sequences and morphology in Dolichopodinae systematics (Diptera:Dolichopodidae) Invertebr. Syst. 2010;24:32–50. doi: 10.1071/IS09040. DOI

Bazsalovicsová E., Králová-Hromadová I., Brabec J., Hanzelová V., Oros M., Scholz T. Conflict between morphology and molecular data: A case of the genus Caryophyllaeus (Cestoda: Caryophyllidea), monozoic tapeworms of cyprinid fishes. Folia Parasitol. 2014;61:347–354. doi: 10.14411/fp.2014.035. PubMed DOI

Decru E., Moelants T., De Gelas K., Vreven E., Verheyen E., Snoeks J. Taxonomic challenges in freshwater fishes: A mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin. Mol. Ecol. Resour. 2016;16:342–352. doi: 10.1111/1755-0998.12445. PubMed DOI

lechtová V., Musilová Z., Kottelat M., Tan H.H., Bohlen J. One northward, one southward: Contrasting biogeography of two benthic freshwater fish species across Southeast Asia. Mol. Phyl. Evol. 2021;161:107139. doi: 10.1016/j.ympev.2021.107139. PubMed DOI

Lewis R.L., Beckenbach A.T., Mooers A. The phylogeny of the subgroups within the melanogaster species group: Likelihood tests on COI and COII sequences and a Bayesian estimate of phylogeny. Mol. Phylogenetics Evol. 2005;37:15–24. doi: 10.1016/j.ympev.2005.02.018. PubMed DOI

Katoh T., Nakaya D., Tamura K., Aotsuka T. Phylogeny of the Drosophila immigrans Species Group (Diptera: Drosophilidae) Based on Adh and Gpdh Sequences. Zool. Sci. 2007;24:913–921. doi: 10.2108/zsj.24.913. PubMed DOI

Conner W.R., Delaney E.K., Bronski M.J., Ginsberg P.S., Wheeler T.B., Richardson K.M., Peckenpaugh B., Kim K.J., Watada M., Hoffmann A.A., et al. A phylogeny for the Drosophila montium species group: A model clade for comparative analyses. Mol. Phylogenetics Evol. 2021;158:107061. doi: 10.1016/j.ympev.2020.107061. PubMed DOI PMC

Bănărescu P. Zoogeography of Fresh Waters. Volume 2. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. AULA-Verlag; Wiesbaden, Germany: 1992.

Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Publications Kottelat; Cornol, Switzerland: 2007. 646p

Kottelat M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei) Raff. Bull. Zool. 2012;26:1–99.

Bohlen J., Dvořák T., Šlechta V., Šlechtová V. Sea water shaping the freshwater biota: Hidden diversity and biogeographic history in the Paracanthocobitis zonalternans species complex (Teleostei: Nemacheilidae) in western Southeast Asia. Mol. Phylogenetics Evol. 2020;148:106806. doi: 10.1016/j.ympev.2020.106806. PubMed DOI

Bohlen J., Dvořák T., Šlechta V., Šlechtová V. Resolving an unnoticed diversity within the Schistura robertsi species complex (Teleostei: Nemacheilidae) using molecules and morphology. Mol. Phylogenetics Evol. 2020;151:106894. doi: 10.1016/j.ympev.2020.106894. PubMed DOI

Bănărescu P.M., Nalbant T.T. A generical classification of Nemacheilinae with description of two new genera (Teleostei: Cypriniformes: Cobitidae) Trav. Du Muséum D’histoire Nat. Grigore Antipa. 1995;35:429–495.

Kottelat M. Indochinese Nemacheilines, a Revision of Nemacheiline Loaches (Pisces: Cypriniformes) of Thailand, Burma, Laos, Cambodia and Southern Vietnam. Pfeil; München, Germany: 1990. 262p

Kottelat M. Mustura celata, a new genus and species of loaches from northern Myanmar, and an overview of Physoschistura and related taxa (Teleostei: Nemacheilidae) Ichthyol. Explor. Freshw. 2018;28:1–26.

Kottelat M. Rhyacoschistura larreci, a new genus and species of loach from Laos and redescription of R. suber (Teleostei: Nemacheilidae) Zootaxa. 2019;4612:151–170. doi: 10.11646/zootaxa.4612.2.1. PubMed DOI

Bohlen J., Šlechtová V. A new genus and two new species of loaches (Teleostei: Nemacheilidae) from Myanmar. Ichthyol. Explor. Freshw. 2011;22:1–10.

Grant S. A new subgenus of Acanthocobitis Peters, 1861 (Teleostei: Nemacheilidae) Ichthyofile. 2007;2:1–9.

Prokofiev A.M. Problems of the classification and phylogeny of nemacheiline loaches of the group lacking the pre ethmoid I (Cypriniformes: Balitoridae: Nemacheilinae) J. Ichthyol. 2009;49:874. doi: 10.1134/S0032945209100051. DOI

Tang Q., Liu H., Mayden R., Xiong B. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes) Mol. Phylogenetics Evol. 2006;39:347–357. doi: 10.1016/j.ympev.2005.08.007. PubMed DOI

Liu S.-Q., Mayden R.L., Zhang J.-B., Yu D., Tang Q.-Y., Deng X., Liu H.-Z. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene. 2012;508:60–72. doi: 10.1016/j.gene.2012.07.040. PubMed DOI

Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC

Xiao N., Zhou J., Deng H., Wen H. A new blind species of the cave genus Oreonectes from Guizhou, China (Nemacheilinae) ZooKeys. 2016;637:47–59. doi: 10.3897/zookeys.637.10202. PubMed DOI PMC

Sgouros K., Page L.M., Orlofske S.A., Jadin R.C. A revised molecular phylogeny reveals polyphyly in Schistura (Teleostei: Cypriniformes: Nemacheilidae) Zootaxa. 2019;4559:349. doi: 10.11646/zootaxa.4559.2.8. PubMed DOI

Sambrook J., Fritschi E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York, NY, USA: 1989.

Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N. DNA Barcoding Australia’s fish species. Philos. Trans. R. Soc. Lon.d B Biol. Sci. 2005;360:1847–1857. doi: 10.1098/rstb.2005.1716. PubMed DOI PMC

Šlechtová V., Bohlen J., Freyhof J., Ráb P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol. Phylogenetics Evol. 2006;39:529–541. doi: 10.1016/j.ympev.2005.09.018. PubMed DOI

Chen W.-J., Miya M., Saitoh K., Mayden R.L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene. 2008;423:125–134. doi: 10.1016/j.gene.2008.07.016. PubMed DOI

Quenouille B., Bermingham E., Planes S. Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol. Phylogenetics Evol. 2004;31:66–88. doi: 10.1016/S1055-7903(03)00278-1. PubMed DOI

Šlechtová V., Bohlen J., Tan H.H. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol. Phylogenetics Evol. 2007;44:1358–1365. doi: 10.1016/j.ympev.2007.02.019. PubMed DOI

Li C., Ortí G., Zhang G., Lu G. A practical approach to phylogenomics: The phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 2007;7:44. doi: 10.1186/1471-2148-7-44. PubMed DOI PMC

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999;41:95–98.

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X Version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Zhang D., Gao F., Jakovlić I., Zou H., Zhang J., Li W.X., Wang G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020;20:348–355. doi: 10.1111/1755-0998.13096. PubMed DOI

Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; New Orleans, LA, USA: IEEE; 2010. pp. 1–8. DOI

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Puillandre N., Lambert A., Brouillet S., Achaz G. ABGD, automaticbarcode gap discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI

Puillandre N., Brouillet S., Achaz G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2020;21:609–620. doi: 10.1111/1755-0998.13281. PubMed DOI

Pons J., Barraclough T.G., Gómez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun S., Sumlin W.D., Vogler A.P. Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI

Zhang J., Kapli P., Pavlidis P., Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC

Ogilvie J.E., Griffin S.R., Gezon Z.J., Inouye B.D., Underwood N., Inouye D.W., Irwin R.E. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol. Lett. 2017;20:1507–1515. doi: 10.1111/ele.12854. PubMed DOI

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Rambaut A., Drummond A.J. TreeAnnotator Version 1.6.1. 2010. [(accessed on 10 January 2022)]. Available online: http://beast.bio.ed.ac.uk/TreeAnnotator.

Huson D.H., Scornavacca C. Dendroscope 3- An interactive viewer for rooted phylogenetic trees and networks. Syst. Biol. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. PubMed DOI

Prokofiev A.M. Redescription of a fossil loach Triplophysa opinata (Yakowlew, 1959) from the Miocene of Kirgizia (Balitoridae: Nemacheilinae) J. Ichthyol. 2007;47:26–31. doi: 10.1134/S0032945207010031. DOI

Böhme M., Ilg A. FosFARbase. 2003. [(accessed on 23. October 2021)]. Available online: www.wahre-staerke.com/

Clark M.K., Schoenbohm L.M., Royden L.H., Whipple K.X., Burchfield B.C., Zhang X., Tang W., Wang E., Chen L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale draining patterns. Tectonics. 2004;23:TC1006. doi: 10.1029/2002TC001402. DOI

Ritchie A.M., Lo N., Ho S.Y.W. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling. Syst. Biol. 2017;66:413–425. doi: 10.1093/sysbio/syw095. PubMed DOI

Rambaut A. Figtree version 1.4.4. 2019. [(accessed on 10 January 2022)]. Available online: http://tree.bio.ed.ac.uk/software/figtree.

Egger B., Koblmüller S., Sturmbauer C., Sefc K.M. Nuclear and mitochondrial datareveal different evolutionary processes in the Lake Tanganyika cichlid genusTropheus. BMC Evol. Biol. 2007;7:137. doi: 10.1186/1471-2148-7-137. PubMed DOI PMC

Van Steenberge M., Raeymaekers J.A.M., Hablützel P.I., Vanhove M.P.M., Koblmüller S., Snoeks J. Delineating species along shifting shorelines: Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika. Front. Zool. 2018;15:42. doi: 10.1186/s12983-018-0287-4. PubMed DOI PMC

Singer R.A., Pfeiffer J.M., Page L.M. A revision of the Paracanthocobitis zonalternans (Cypriniformes: Nemacheilidae) species complex with descriptions of three new species. Zootaxa. 2017;4324:85–107. doi: 10.11646/zootaxa.4324.1.5. DOI

Abell R., Thieme M., Revenga C., Kottelat M., Bogutskaya N., Coad B., Mandrak N., Balderas S.C., Bussing W. Freshwater ecoregions of the world: A new map ofbiogeographic units for freshwater biodiversity conservation. Bioscience. 2008;58:403–414. doi: 10.1641/B580507. DOI

Morley C.K., Naing T.T., Searle M., Robinson S.A. Structural and tectonic development of the Indo-Burma ranges. Earth-Sci. Rev. 2020;200:102992. doi: 10.1016/j.earscirev.2019.102992. DOI

Bolotov I.N., Aksenova O.V., Bakken T., Glasby C.J., Gofarov M., Kondakov A.V., Konopleva E.S., Lopes-Lima M., Lyubas A.A., Wang Y., et al. Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nat. Commun. 2018;9:2882. doi: 10.1038/s41467-018-05133-4. PubMed DOI PMC

Bolotov I.N., Konopleva E.S., Vikhrev I.V., Gofarov M.Y., Lopes-Lima M., Bogan A.E., Lunn Z., Chan N., Win T., Aksenova O.V., et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Sci. Rep. 2020;10:6616. doi: 10.1038/s41598-020-63612-5. PubMed DOI PMC

Kottelat M., Baird I.G., Kullander S.O., Ng H.H., Parenti L.R., Rainboth W.J., Vidthayanon C. The status and distribution of freshwater fishes of Indo-Burma. In: Allen D.J., Darwall W.R.T., Smith K.G., editors. The Status and Distribution of Freshwater Biodiversity in Indo-Burma. IUCN; Cambridge, UK: Gland, Switzerland: 2012. pp. 50–77. Chapter 3.

Bohlen J., Šlechtová V., Udomritthiruj K. Schistura hypsiura, a new species of loach (Cobitoidea: Nemacheilidae) from South-West Myanmar. Raff. Bull. Zool. 2014;62:21–27.

Kullander S.O. Taxonomy of chain Danio, an Indo-Myanmar species assemblage, with descriptions of four new species (Teleostei: Cyprinidae) Ichthyol. Explor. Freshw. 2015;25:357–380.

Barman A.S., Singh M., Pandey P.K. DNA barcoding and genetic diversity analyses of fishes of Kaladan River of Indo-Myanmar biodiversity hotspot. Mitochondrial DNA Part A. 2018;29:367–378. doi: 10.1080/24701394.2017.1285290. PubMed DOI

Bracciali L., Najman Y., Parrish R.R., Akhter S.H., Millar I. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya. Earth Planet. Sci. Lett. 2015;415:25–37. doi: 10.1016/j.epsl.2015.01.022. DOI

Licht A., Reisberg L., France-Lanord C., Fontain C., Soe A.N., Jaeger J.J. Cenozoic evolution of the central Myanmar drainage system: Insights from sediment provenance in the Minbu Sub-Basin. Basin Res. 2016;28:237–251. doi: 10.1111/bre.12108. DOI

Zhang P., Najman Y., Mei L., Millar I., Sobel E.R., Carter A., Barfod D., Dhuime B., Garzanti E., Govin G., et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics. Earth-Sci. Rev. 2019;192:601–630. doi: 10.1016/j.earscirev.2019.02.003. DOI

Haq B.U., Hardenbol J., Vail P.R. Chronology of Fluctuating Sea Levels Since the Triassic. Science. 1987;235:1156–1167. doi: 10.1126/science.235.4793.1156. PubMed DOI

Shih H.-T., Kamrani E., Davie P.J.F., Liu M.-Y. Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea species-complex. Hydrobiologia. 2009;635:373–382. doi: 10.1007/s10750-009-9930-6. DOI

Sang T., Zhong Y. Testing hybridization hypotheses based on incongruent gene trees. Syst. Biol. 2000;49:422–434. doi: 10.1080/10635159950127321. PubMed DOI

Gonçalves H., Martínez-Solano I., Ferrand N., García-París M. Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): Deep coalescence or ancestral hybridization? Mol. Phylogenetics Evol. 2007;44:494–500. doi: 10.1016/j.ympev.2007.03.001. PubMed DOI

Funk D.J., Omland K.E. Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2003;34:397–423. doi: 10.1146/annurev.ecolsys.34.011802.132421. DOI

McCracken K.G., Sorenson M.D. Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? Syst. Biol. 2005;54:35–55. doi: 10.1080/10635150590910249. PubMed DOI

Kottelat M. Fishes of the Xe Kong Drainage in Laos, Especially from the Xe Kaman. Project Report. 2011. [(accessed on 16 January 2022)]. pp. 1–19. Available online: https://wwf.panda.org/wwf_news/?202388/Fishes-of-the-Xe-Kong-drainage-in-Laos.

Pentinsaari M., Vos R., Mutanen M. Algorithmic single-locus species delimitation: Effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Mol. Ecol. Resour. 2017;17:393–404. doi: 10.1111/1755-0998.12557. PubMed DOI

Renner M.A.M., Heslewood M.M., Patzak S.D.F., Schäfer-Verwimp A., Heinrichs J. By how much do we underestimate species diversity of liverworts using morphological evidence? An example from Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida) Mol. Phylogenetics Evol. 2017;107:576–593. doi: 10.1016/j.ympev.2016.12.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...