Reconstructing the phylogeny and evolutionary history of freshwater fishes (Nemacheilidae) across Eurasia since early Eocene
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-18453S
Czech Science Foundation
24-44-20019
Russian Science Foundation
206/08/0637
Czech Science Foundation
PubMed
40184190
PubMed Central
PMC11970906
DOI
10.7554/elife.101080
PII: 101080
Knihovny.cz E-zdroje
- Klíčová slova
- Cypriniformes, Nemacheilidae, Teleostei, ecology, evolutionary biology,
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- fylogeneze * MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.
Stone loaches, also known as Nemacheilidae, are a large family of fish commonly found in the streams and rivers of Europe and Asia, with a small number of species also inhabiting certain Ethiopian lakes. How these fish, which originated in Asia about 50 million years ago, made their way into European and African waters remains poorly understood. Major geological and climate changes took place throughout this period, from the formation of the Himalayas and other mountain ranges in eastern and western Asia to large drops in temperatures or rainfalls in certain regions. Šlechtová et al. studied the influence of these events on the spread and evolution of stone loaches. The team used a large dataset of 471 samples obtained from more than 250 species to reconstruct the evolutionary tree of the Nemacheilidae. The analysis uncovers six major groups (or clades) within the family, all stemming from a common ancestor living 48 million years ago in Indochina (current mainland Southeast Asia). Each clade has separate yet sometimes overlapping geographical distributions. They followed distinct routes to spread across Asia and Europe, which Šlechtová et al. were able to examine in the light of geological and climate changes. For instance, a major aridification event taking place in Central Asia between 34 to 23 million years ago created a geographical divide within an ancestral stone loach group, splitting it into two parts that evolved separately to form two of the six current clades. While the Himalayas also acted as a strong barrier, growing highlands in eastern and western Asia expanded the range of suitable habitats for the fish, allowing them to colonize central and northern Asia and, from there, Europe. Other major geological events played a strong role in the propagation of the Nemacheilidae. When a small tectonic plate known as West Burma Terrane first contacted Southeast Asia 33 million years ago and later northeast India around 30 million years ago, the ancestral fish family used the plate like a ferry boat to spread to these new territories, and from there, expand into the Near East, Southeast Europe and Northeast Africa. These findings build on prior work investigating how geological and climate events have shaped evolution. However, they are the first case study to show the complete evolution of an animal group over such a large area and long period. It is the first detailed example of its type and could be precious to inform future work on evolution.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Lee Kong Chian Natural History Museum National University of Singapore Singapore Singapore
Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
Papanin Institute of Biology of Inland Waters Russian Academy of Sciences Borok Russian Federation
doi: 10.1101/2024.07.05.602185 PubMed
Před aktualizacídoi: 10.7554/eLife.101080.1 PubMed
Před aktualizacídoi: 10.7554/eLife.101080.2 PubMed
Zobrazit více v PubMed
Andreyenkova NG, Karyakin IV, Starikov IJ, Sauer‐Gürth H, Literák I, Andreyenkov OV, Shnayder EP, Bekmansurov RH, Alexeyenko MN, Wink M, Zhimulev IF. Phylogeography and demographic history of the black kite Milvus migrans, a widespread raptor in Eurasia, Australia and Africa. Journal of Avian Biology. 2021;52:2822. doi: 10.1111/jav.02822. DOI
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C. Geological and climatic influences on mountain biodiversity. Nature Geoscience. 2018;11:718–725. doi: 10.1038/s41561-018-0236-z. DOI
Atlas D. Diercke International Atlas. Westermann; 2023.
Ballarin F, Li SQ. Diversification in tropics and subtropics following the mid-Miocene climate change: A case study of the spider genus Nesticella. Global Change Biology. 2018;24:e577–e591. doi: 10.1111/gcb.13958. PubMed DOI
Bănărescu P. Zoogeography of Fresh Waters Vol. 2: Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Wiesbaden: AULA; 1992.
Blakey R. DeepTime Maps. 2023. [June 17, 2024]. https://deeptimemaps.com
Bohlen J, Dvořák T, Šlechta V, Šlechtová V. Resolving an unnoticed diversity within the Schistura robertsi species complex (Teleostei: Nemacheilidae) using molecules and morphology. Molecular Phylogenetics and Evolution. 2020a;151:106894. doi: 10.1016/j.ympev.2020.106894. PubMed DOI
Bohlen J, Dvořák T, Šlechta V, Šlechtová V. Sea water shaping the freshwater biota: Hidden diversity and biogeographic history in the Paracanthocobitis zonalternans species complex (Teleostei: Nemacheilidae) in western Southeast Asia. Molecular Phylogenetics and Evolution. 2020b;148:106806. doi: 10.1016/j.ympev.2020.106806. PubMed DOI
Böhme M, Ilg A. fosFARbase. 2003. [October 24, 2024]. https://www.fosfarbase.org//
Bosboom RE, Abels HA, Hoorn C, van den Berg BCJ, Guo Z, Dupont-Nivet G. Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO) Earth and Planetary Science Letters. 2014;389:34–42. doi: 10.1016/j.epsl.2013.12.014. DOI
Bosworth W, Huchon P, McClay K. The Red Sea and Gulf of Aden basins. Journal of African Earth Sciences. 2005;43:334–378. doi: 10.1016/j.jafrearsci.2005.07.020. DOI
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Chen WJ, Bonillo C, Lecointre G. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution. 2003;26:262–288. doi: 10.1016/s1055-7903(02)00371-8. PubMed DOI
Chen WJ, Miya M, Saitoh K, Mayden RL. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene. 2008;423:125–134. doi: 10.1016/j.gene.2008.07.016. PubMed DOI
Chen GJ, Wei L, Xue-Qiang LEI. First fossil cobitid (Teleostei: Cypriniformes) from early- middle oligocene deposits of South China. Vert. PalAs. 2015;53:299–309. doi: 10.0000/2096-9899-53/4/299. DOI
Chen WT, Yang JP, Li YF, Li X. Exploring taxonomic diversity and biogeography of the family Nemacheilinae (Cypriniformes) Ecology and Evolution. 2019;9:10343–10353. doi: 10.1002/ece3.5553. PubMed DOI PMC
Chu SL, Chen YR. A new blind cobitid fish (Pisces, Cypriniformes) from subterranean waters in Yunnan, China. Acta Zool. Sin. 1979;25:285–287.
Clift PD, Webb AAG. A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia. Geological Society, London, Special Publications. 2019;483:631–652. doi: 10.1144/SP483.1. DOI
Conway KW, Kottelat M. Physoschistura mango, a new miniature species of loach from Myanmar (Teleostei: Nemacheilidae) Raf. Bull. Zool. 2023;71:681–701. doi: 10.26107/RBZ-2023-0051. DOI
De Schepper S, Gibbard PL, Salzmann U, Ehlers J. A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Science Reviews. 2014;135:83–102. doi: 10.1016/j.earscirev.2014.04.003. DOI
Delić T, Stoch F, Borko Š, Flot J, Fišer C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. Journal of Biogeography. 2020;47:1875–1887. doi: 10.1111/jbi.13875. DOI
Deng T, Wu FX, Zhou ZK, Su T. Tibetan Plateau: An evolutionary junction for the history of modern biodiversity. Science China Earth Sciences. 2020;63:172–187. doi: 10.1007/s11430-019-9507-5. DOI
Ding L, Spicer RA, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer TEV, Yue Y, Shukla A, Srivastava G, Khan MA, Bera S, Mehrotra R. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology. 2017;45:215–218. doi: 10.1130/G38583.1. DOI
Dvořák T, Šlechtová V, Bohlen J. Using species groups to approach the large and taxonomically unresolved freshwater fish family Nemacheilidae (Teleostei: Cypriniformes) Biology. 2022;11:175. doi: 10.3390/biology11020175. PubMed DOI PMC
Dvořák T, Bohlen J, Kottelat M, Šlechtová V. Revision of the Schistura cincticauda species group (Teleostei, Nemacheilidae) using molecular and morphological markers. Scientific Reports. 2023;13:16996. doi: 10.1038/s41598-023-42852-1. PubMed DOI PMC
Feduccia A. Explosive evolution in tertiary birds and mammals. Science. 1995;267:637–638. doi: 10.1126/science.267.5198.637. PubMed DOI
Friedman M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings. Biological Sciences. 2010;277:1675–1683. doi: 10.1098/rspb.2009.2177. PubMed DOI PMC
Fritz SA, Eronen JT, Schnitzler J, Hof C, Janis CM, Mulch A, Böhning-Gaese K, Graham CH. Twenty-million-year relationship between mammalian diversity and primary productivity. PNAS. 2016;113:10908–10913. doi: 10.1073/pnas.1602145113. PubMed DOI PMC
Gu Q, Wang S, Zhong H, Yuan H, Yang J, Yang C, Huang X, Xu X, Wang Y, Wei Z, Wang J, Liu S. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC) BMC Genomics. 2022;23:242. doi: 10.1186/s12864-022-08468-x. PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999;41:95–98.
Harzhauser M, Kroh A, Mandic O, Piller WE. Biogeographic responses all around the Oligo-Miocene Tethyan seaway. Zoologischer Anzeiger. 2007;246:241–256. doi: 10.1016/j.jcz.2007.05.001. DOI
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Hutchinson DK, Coxall HK, Lunt DJ, Steinthorsdottir M, de Boer AM, Baatsen M, von der Heydt A, Huber M, Kennedy-Asser AT, Kunzmann L, Ladant J-B, Lear CH, Moraweck K, Pearson PN, Piga E, Pound MJ, Salzmann U, Scher HD, Sijp WP, Śliwińska KK, Wilson PA, Zhang Z. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past. 2021;17:269–315. doi: 10.5194/cp-17-269-2021. DOI
Ishii H, Amaike Y, Nishita Y, Abramov AV, Masuda R. Phylogeography of the stone marten (Martes foina: Mustelidae: Mammalia) in Eurasia, based on a mitochondrial DNA analysis. Mammal Research. 2023;68:375–381. doi: 10.1007/s13364-023-00690-6. DOI
Kahlke RD. The origin of eurasian mammoth faunas (Mammuthus–Coelodonta Faunal Complex) Quaternary Science Reviews. 2014;96:32–49. doi: 10.1016/j.quascirev.2013.01.012. DOI
Kalous L, Rylková K, Petrtýl M, Bohlen J. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio. Ichthyol. Explor. Freshw. 2012;23:11–18.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Kottelat M. A Revision of Nemacheiline Loaches (Pisces: Cypriniformes) of Thailand, Burma, Laos, Cambodia and Southern Viet Nam. National Library of Australia; 1990.
Kottelat M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei) Raf. Bull. Zool. 2012;26:1–99.
Kottelat M. The fishes of inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raf. Bull. Zool. 2013;27:1–663.
Kottelat M. Mustura celata, a new genus and species of loaches from northern Myanmar, and an overview of Physoschistura and related taxa (Teleostei: Nemacheilidae) Ichthyol. Explor. Freshw. 2018;28:289–314. doi: 10.23788/IEF-1080. DOI
Kottelat M. Rhyacoschistura larreci, a new genus and species of loach from Laos and redescription of R. suber (Teleostei: Nemacheilidae) Zootaxa. 2019;4612:151–170. doi: 10.11646/zootaxa.4612.2.1. PubMed DOI
Kotwicki V, Al Sulaimani Z. Climates of the Arabian Peninsula – past, present, future. International Journal of Climate Change Strategies and Management. 2009;1:297–310. doi: 10.1108/17568690910977500. DOI
Kwan YS, Ko MH, Won YJ. Genomic replacement of native Cobitis lutheri with introduced C. tetralineata through a hybrid swarm following the artificial connection of river systems. Ecology and Evolution. 2014;4:1451–1465. doi: 10.1002/ece3.1027. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution. 2016;34:msw260. doi: 10.1093/molbev/msw260. PubMed DOI
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Lehner B, Grill G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes. 2013;27:2171–2186. doi: 10.1002/hyp.9740. DOI
Leplongeon A. The main nile valley at the end of the pleistocene (28–15 ka): dispersal corridor or environmental refugium? Frontiers in Earth Science. 2021;8:607183. doi: 10.3389/feart.2020.607183. DOI
Liu J. Redescription of ‘Amyzon’ brevipinne and remarks on North American Eocene catostomids (Cypriniformes: Catostomidae) Journal of Systematic Palaeontology. 2021;19:677–689. doi: 10.1080/14772019.2021.1968966. DOI
Liu X, Yuan S, Bai X, Jiang J, Li Y, Liu J. Tectonic uplift of the Tianshan Mountains since Quaternary: evidence from magnetostratigraphy of the Yili Basin, northwestern China. International Journal of Earth Sciences. 2023;112:855–865. doi: 10.1007/s00531-022-02288-w. DOI
Luo T, Yang Q, Wu L, Wang YA, Zhou JJ. Phylogenetic relationships of Nemacheilidae cavefish (Heminoemacheilus, Oreonectes, Yunnanilus, Paranemachilus, and Troglonectes) revealed by analysis of mitochondrial genome and seven nuclear genes. Zoological Research. 2023;44:693–697. doi: 10.24272/j.issn.2095-8137.2022.266. PubMed DOI PMC
Matschiner M, Musilová Z, Barth JMI, Starostová Z, Salzburger W, Steel M, Bouckaert R. Bayesian node dating based on probabilities of fossil sampling supports trans-atlantic dispersal of cichlid fishes. bioRxiv. 2017 doi: 10.1101/038455. PubMed DOI
Matzke NJ. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography. 2013;5:242–248. doi: 10.21425/F5FBG19694. DOI
Mayhew PJ, Bell MA, Benton TG, McGowan AJ. Biodiversity tracks temperature over time. PNAS. 2012;109:15141–15145. doi: 10.1073/pnas.1200844109. PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science gateway for inference of large phylogenetic trees. Proc. Gateway Computing Environments Workshop 2010.2010.
Min R, Zhao YH, Kang B, Chen XY, Yang JX. Vicariance and monsoon as drivers of diversification of nemacheilid loaches (Teleostei: Cypriniformes) around the Hengduan Mountains of China. Zoological Research. 2023;44:936–938. doi: 10.24272/j.issn.2095-8137.2023.020. PubMed DOI PMC
Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution. 2020;37:2727–2733. doi: 10.1093/molbev/msaa106. PubMed DOI PMC
Morley RJ. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. Journal of Tropical Ecology. 2018;34:209–234. doi: 10.1017/S0266467418000202. DOI
Morley CK, Naing TT, Searle M, Robinson SA. Structural and tectonic development of the Indo-Burma ranges. Earth-Science Reviews. 2020;200:102992. doi: 10.1016/j.earscirev.2019.102992. DOI
Morley RJ, Hasan SS, Morley HP, Jais JHM, Mansor A, Aripin MR, Nordin MH, Rohaizar MH. Sequence biostratigraphic framework for the Oligocene to Pliocene of Malaysia: High-frequency depositional cycles driven by polar glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology. 2021;561:110058. doi: 10.1016/j.palaeo.2020.110058. DOI
Mudelsee M, Bickert T, Lear CH, Lohmann G. Cenozoic climate changes: A review based on time series analysis of marine benthic δ 18 O records. Reviews of Geophysics. 2014;52:333–374. doi: 10.1002/2013RG000440. DOI
Müller NF, Bouckaert R. Coupled MCMC in BEAST 2. bioRxiv. 2019 doi: 10.1101/603514. PubMed DOI PMC
Müller NF, Bouckaert RR. Adaptive metropolis-coupled MCMC for BEAST 2. PeerJ. 2020;8:e9473. doi: 10.7717/peerj.9473. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Nissen E, Walker R, Molor E, Fattahi M, Bayasgalan A. Late Quaternary rates of uplift and shortening at Baatar Hyarhan (Mongolian Altai) with optically stimulated luminescence. Geophysical Journal International. 2009;177:259–278. doi: 10.1111/j.1365-246X.2008.04067.x. DOI
Obrhelova N. Cyprinoidei (Pisces) aus dem hangenden des miozänen Braunkohlenflözes Nordböhmens. Palaeontographica, Ser. A. 1967;126:141–179.
Popova S, Utescher T, Gromyko D, Bruch A, Mosbrugger V. Palaeoclimate evolution in Siberia and the Russian far east from the Oligocene to Pliocene – evidence from fruit and seed floras. Turkish Journal of Earth Sciences. 2012;21:10056. doi: 10.3906/yer-1005-6. DOI
Prokofiev AM. Redescription of a fossil loach Triplophysa opinata (Yakowlew, 1959) from the Miocene of Kirgizia (Balitoridae: Nemacheilinae) Journal of Ichthyology. 2007;47:26–31. doi: 10.1134/S0032945207010031. DOI
Prokofiev AM, Golubtsov AS. Revision of the loach genus Afronemacheilus (Teleostei: Balitoridae: Nemacheilinae) with description of a new species from the Omo-Turkana basin, Ethiopia. Ichthyol. Explor. Freshw. 2013;24:1–14.
Rambaut A, Drummond AJ. TreeAnnotator. 1.6.1BEAST. 2010 https://beast.community/treeannotator
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior Summarization in bayesian phylogenetics using tracer 1.7. Systematic Biology. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Rambaut A. Figtree. 1.4.4GitHub. 2019 https://github.com/rambaut/figtree
Ree RH, Sanmartin I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI
Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Saito T, Hirano T, Prozorova L, Tu Do V, Sulikowska-Drozd A, Sitnikova T, Surenkhorloo P, Yamazaki D, Morii Y, Kameda Y, Fukuda H, Chiba S. Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evolutionary Biology. 2018;18:164. doi: 10.1186/s12862-018-1273-3. PubMed DOI PMC
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evolutionary Biology. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews. 2012;113:212–270. doi: 10.1016/j.earscirev.2012.03.002. DOI
Sgouros K, Page LM, Orlofske SA, Jadin RC. A revised molecular phylogeny reveals polyphyly in Schistura (Teleostei: Cypriniformes: Nemacheilidae) Zootaxa. 2019;4559:349–362. doi: 10.11646/zootaxa.4559.2.8. PubMed DOI
Shen X, Wan S, Colin C, Tada R, Shi X, Pei W, Tan Y, Jiang X, Li A. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary. Earth and Planetary Science Letters. 2018;502:74–83. doi: 10.1016/j.epsl.2018.08.056. DOI
Singer RA, Page LM. Revision of the zipper loaches, Acanthocobitis and Paracanthocobitis (Teleostei: Nemacheilidae), with descriptions of five new species. Copeia. 2015;103:378–401. doi: 10.1643/CI-13-128. DOI
Šlechtová V, Musilova Z, Tan HH, Kottelat M, Bohlen J. One northward, one southward: Contrasting biogeographical history in two benthic freshwater fish genera across Southeast Asia (Teleostei: Cobitoidea: Nemacheilus, Pangio) Molecular Phylogenetics and Evolution. 2021;161:107139. doi: 10.1016/j.ympev.2021.107139. PubMed DOI
Stewart KM, Murray AM. Biogeographic implications of fossil fishes from the Awash River, Ethiopia. Journal of Vertebrate Paleontology. 2017;37:e1269115. doi: 10.1080/02724634.2017.1269115. DOI
Summerhayes CP. Earth’s Climate Evolution. Wiley Blackwell; 2015. DOI
Sun X, Wang P. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology. 2005;222:181–222. doi: 10.1016/j.palaeo.2005.03.005. DOI
Tang Q, Liu H, Mayden R, Xiong B. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes) Molecular Phylogenetics and Evolution. 2006;39:347–357. doi: 10.1016/j.ympev.2005.08.007. PubMed DOI
Trifonov VG, Ivanova TP, Bachmanov DM. Recent mountain building of the central Alpine-Himalayan Belt. Geotectonics. 2012;46:315–332. doi: 10.1134/S0016852112050068. DOI
Wang P. In: Continent-Ocean Interactions in the East Asian Marginal Seas. Clift P, Wang P, Kuhnt W, Hayes D, editors. American Geophysical Union; 2004. Cenocoic deformation and the history of sea-land interactions in asia; pp. 1–22. DOI
Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y. Constraints on the early uplift history of the Tibetan Plateau. PNAS. 2008;105:4987–4992. doi: 10.1073/pnas.0703595105. PubMed DOI PMC
Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science. 2020;369:1383–1387. doi: 10.1126/science.aba6853. PubMed DOI
Westerweel J, Roperch P, Licht A, Dupont-Nivet G, Win Z, Poblete F, Ruffet G, Swe HH, Thi MK, Aung DW. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nature Geoscience. 2019;12:863–868. doi: 10.1038/s41561-019-0443-2. PubMed DOI PMC
Westerweel J, Licht A, Cogné N, Roperch P, Dupont‐Nivet G, Kay Thi M, Swe HH, Huang H, Win Z, Wa Aung D. Burma terrane collision and northward indentation in the eastern himalayas recorded in the eocene‐miocene chindwin basin (Myanmar) Tectonics. 2020;39:e2020TC006413. doi: 10.1029/2020TC006413. DOI
Ye JW, Tian B, Li DZ. Monsoon intensification in East Asia triggered the evolution of its flora. Frontiers in Plant Science. 2022;13:1046538. doi: 10.3389/fpls.2022.1046538. PubMed DOI PMC
Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution. 2015;87:46–49. doi: 10.1016/j.ympev.2015.03.008. PubMed DOI
Zachos JC, Pagani M, Sloan LC, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–693. doi: 10.1126/science.1059412. PubMed DOI
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources. 2020;20:348–355. doi: 10.1111/1755-0998.13096. PubMed DOI
Zheng H, Wei X, Tada R, Clift PD, Wang B, Jourdan F, Wang P, He M. Late oligocene-early miocene birth of the taklimakan desert. PNAS. 2015;112:7662–7667. doi: 10.1073/pnas.1424487112. PubMed DOI PMC
Dryad
10.5061/dryad.rxwdbrvhz