Genotyping of Campylobacter jejuni and prediction tools of its antimicrobial resistance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-16549S
Grantová Agentura České Republiky
RO0523
Ministerstvo Zemědělství
PubMed
37816942
PubMed Central
PMC10876727
DOI
10.1007/s12223-023-01093-5
PII: 10.1007/s12223-023-01093-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial resistance, MLST, PFGE, RGI, ResFinder, cgMLST, mP-BIT,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- Campylobacter jejuni * genetika MeSH
- genotyp MeSH
- kampylobakterové infekce * mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
Although Campylobacter jejuni is the pathogen responsible for the most common foodborne illness, tracing of the infection source remains challenging due to its highly variable genome. Therefore, one of the aim of the study was to compare three genotyping methods (MLST, PFGE, and mP-BIT) to determine the most effective genotyping tool. C. jejuni strains were divided into 4 clusters based on strain similarity in the cgMLST dendrogram. Subsequently, the dendrograms of the 3 tested methods were compared to determine the accuracy of each method compared to the reference cgMLST method. Moreover, a cost-benefit analysis has showed that MLST had the highest inverse discrimination index (97%) and required less workflow, time, fewer consumables, and low bacterial sample quantity. PFGE was shown to be obsolete both because of its low discriminatory power and the complexity of the procedure. Similarly, mP‑BIT showed low separation results, which was compensated by its high availability. Therefore, our data showed that MLST is the optimal tool for genotyping C. jejuni. Another aim was to compare the antimicrobial resistance to ciprofloxacin, erythromycin, and tetracycline in C. jejuni strains isolated from human, water, air, food, and animal samples by two gene sequence-based prediction methods and to compare them with the actual susceptibility of C. jejuni strains using the disc diffusion method. Both tools, ResFinder and RGI, synchronously predict the antimicrobial susceptibility of C. jejuni and either can be used.
Department of Public Health Medical Faculty Masaryk University Brno Czech Republic
Institute of Biostatistics and Analyses Masaryk University Brno Czech Republic
Veterinary Research Institute Hudcova 296 70 Brno Czech Republic
Zobrazit více v PubMed
Alcock PB, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019;48:D517–D525. doi: 10.1093/nar/gkz93. PubMed DOI PMC
Batz MB, Hoffmann S, Morris JG. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot. 2012;75:1278–1291. doi: 10.4315/0362-028X.JFP-11-418. PubMed DOI
Bharat A, Petkau A, Avery BP, et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using Staramr. Microorganisms. 2022;10:292. doi: 10.3390/microorganisms10020292. PubMed DOI PMC
Blanc D. The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. Infect Genet Evol. 2004;4:193–197. doi: 10.1016/j.meegid.2004.01.010. PubMed DOI
Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Chibwe M, Odume ON, Nnadozie CF. A review of antibiotic resistance among Campylobacter species in human, animal, and water sources in South Africa: a one health approach. J Water Health. 2023;21:9–26. doi: 10.2166/wh.2022.146. PubMed DOI
Cody AJ, Bray JE, Jolley KA, et al. Core genome multilocus sequence typing scheme for stable, comparative analyses of Campylobacter jejuni and C. coli human disease isolates. J Clin Microbiol. 2017;55:2086–2097. doi: 10.1128/JCM.00080-17. PubMed DOI PMC
Cornelius AJ, Vandenberg O, Robson B, et al. Same-day subtyping of Campylobacter jejuni and C. coli isolates by use of multiplex ligation-dependent probe amplification–binary typing. J Clin Microbiol. 2014;52:3345–3350. doi: 10.1128/JCM.00815-14. PubMed DOI PMC
Dahl LG, Joensen KG, Osterlund MT, et al. Prediction of antimicrobial resistance in clinical Campylobacter jejuni isolates from whole-genome sequencing data. Eur J Clin Microbiol Infect Dis. 2021;40:673–682. doi: 10.1007/s10096-020-04043-y. PubMed DOI PMC
Dai L, Sahin O, Grover M, et al. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant campylobacter. Transl Res. 2020;223:76–88. doi: 10.1016/j.trsl.2020.04.009. PubMed DOI PMC
Deneke C, Uelze L, Brendebach H, et al. Decentralized investigation of bacterial outbreaks based on hashed cgMLST. Front Microbiol. 2021;12:649517. doi: 10.3389/fmicb.2021.649517. PubMed DOI PMC
Dingle KE, Colles FM, Wareing DRA, et al. Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol. 2001;39:14–23. doi: 10.1128/JCM.39.1.14-23.2001. PubMed DOI PMC
Ebel R, Frisbie D (1991) Essentials of education measurement, 1991st edn. Prentice Hall. ISBN 0-87692-700-2
ECDC, EFSA (2022) The European Union One Health 2021 Zoonoses Report. EFSA J 20. 10.2903/j.efsa.2022.7666 PubMed PMC
EFSA Panel on EFSA Biological Hazards B Scientific opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: part 1 (evaluation of methods and applications) EFSA J. 2013;11:3502. doi: 10.2903/j.efsa.2013.3502. DOI
EUCAST (2022) European Committee on Antimicrobial Susceptibility Testing. https://www.eucast.org
Friis C, Wassenaar TM, Javed MA, et al. Genomic characterization of Campylobacter jejuni strain M1. PLoS ONE. 2010;5:e12253. doi: 10.1371/journal.pone.0012253. PubMed DOI PMC
Gibney KB, O’Toole J, Sinclair M et al (2014) Disease burden of selected gastrointestinal pathogens in Australia, 2010. Int J Inf Dis 28:176–185. 10.1016/j.ijid.2014.08.006 PubMed
Gilpin BJ, Walker T, Paine S, et al. A large scale waterborne campylobacteriosis outbreak, Havelock North, New Zealand. J Infect. 2020;81:390–395. doi: 10.1016/j.jinf.2020.06.065. PubMed DOI
Hsu CH, Harrison L, Mukherjee S, et al. Core genome multilocus sequence typing for food animal source attribution of human Campylobacter jejuni infections. Pathogens. 2020;9:1–12. doi: 10.3390/pathogens9070532. PubMed DOI PMC
Hyllestad S, Iversen A, MacDonald E, et al. Large waterborne campylobacter outbreak: Use of multiple approaches to investigate contamination of the drinking water supply system, Norway, June 2019. Eurosurveillance. 2020;25:1–10. doi: 10.2807/1560-7917.ES.2020.25.35.2000011. PubMed DOI PMC
Kolinska R, Drevinek M, Jakubu V, et al. Species identification of Campylobacter jejuni ssp. jejuni and C. coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR. Folia Microbiol. 2008;53:403–409. doi: 10.1007/s12223-008-0061-7. PubMed DOI
Leopold SR, Goering RV, Witten A, et al. Bacterial whole-genome sequencing revisited: Portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52:2365–2370. doi: 10.1128/JCM.00262-14. PubMed DOI PMC
Mangen MJJ, Bouwknegt M, Friesema IHM, et al. Cost-of-illness and disease burden of food-related pathogens in the Netherlands, 2011. Int J Food Microbiol. 2015;196:84–93. doi: 10.1016/j.ijfoodmicro.2014.11.022. PubMed DOI
Nachamkin I, Szymanski C, Blaser MJ (2008) Campylobacter, 3rd edn. ASM Press. ISBN-10 1555814379
Nennig M, Llarena AK, Herold M et al (2021) Investigating major recurring Campylobacter jejuni lineages in Luxembourg using four core or whole genome sequencing typing schemes. Front Cell Infect Microbiol 10. 10.3389/fcimb.2020.608020 PubMed PMC
Neuert S, Nair S, Day MR, et al. Prediction of phenotypic antimicrobial resistance profiles from whole genome sequences of non-typhoidal Salmonella enterica. Front Microbiol. 2018;9:592. doi: 10.3389/fmicb.2018.00592. PubMed DOI PMC
Pope JE, Krizova A, Garg AX, et al. Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum. 2007;37:48–55. doi: 10.1016/j.semarthrit.2006.12.006. PubMed DOI PMC
Reddy S, Zishiri OT. Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Onderstepoort J Vet Res. 2017;84:1–6. doi: 10.4102/ojvr.v84i1.1411. PubMed DOI PMC
Romling U, Schmidt KD, Tummler B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol. 1997;271:386–404. doi: 10.1006/jmbi.1997.1186. PubMed DOI
Rossi M, Da Silva SM, Machado MP et al (2018) INNUENDO whole genome and core genome MLST schemas and datasets for Campylobacter jejuni (1.0). Zenodo. 10.5281/zenodo.1322564
Shagieva E, Demnerova K, Michova H. Waterborne isolates of Campylobacter jejuni are able to develop aerotolerance, survive exposure to low temperature, and interact with Acanthamoeba polyphaga. Front Microbiol. 2021;12:730858. doi: 10.3389/fmicb.2021.730858. PubMed DOI PMC
Shagieva E, Teren M, Michova H, et al. Adhesion, biofilm formation, and luxS sequencing of Campylobacter jejuni isolated from water in the Czech Republic. Front Cell Infect Microbiol. 2020;10:596613. doi: 10.3389/fcimb.2020.596613. PubMed DOI PMC
Sheppard SK, Dallas JF, MacRae M, et al. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol. 2009;134:96–103. doi: 10.1016/j.ijfoodmicro.2009.02.010. PubMed DOI PMC
Sopwith W, Birtles A, Matthews M, et al. Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. Emerg Infect Dis. 2008;14:1769–1773. doi: 10.3201/eid1411.071678. PubMed DOI PMC
Strakova N, Korena K, Gelbicova T, et al. A rapid culture method for the detection of campylobacter from water environments. Int J Environ Res Public Health. 2021;18:6098. doi: 10.3390/ijerph18116098. PubMed DOI PMC
Strakova N, Shagieva E, Ovesna P, et al. The effect of environmental conditions on the occurrence of Campylobacter jejuni and Campylobacter coli in wastewater and surface waters. J Appl Microbiol. 2022;132:725–735. doi: 10.1111/jam.15197. PubMed DOI PMC
Taha-Abdelaziz K, Singh M, Sharif S, et al. Intervention strategies to control campylobacter at different stages of the food chain. Microorganisms. 2023;11:1–32. doi: 10.3390/microorganisms11010113. PubMed DOI PMC
Thomas KM, Glanville WA, Barker GC. Prevalence of campylobacter and salmonella in African food animals and meat: a systematic review and meta-analysis. Int J Food Microbiol. 2020;315:108382. doi: 10.1016/j.ijfoodmicro.2019.108382. PubMed DOI PMC
Tolar B, Joseph LA, Schroeder MN, et al. An overview of PulseNet USA databases. Foodborne Pathog Dis. 2019;16:457–462. doi: 10.1089/fpd.2019.2637. PubMed DOI PMC
Van Dyke MI, Morton VK, McLellan NL, et al. The occurrence of campylobacter in river water and waterfowl within a watershed in southern Ontario, Canada. J Appl Microbiol. 2010;109:1053–1066. doi: 10.1111/j.1365-2672.2010.04730.x. PubMed DOI
Wallace RL, Cribb DM, Bulach DM, et al. Campylobacter jejuni ST50, a pathogen of global importance: a comparative genomic analysis of isolates from Australia, Europe and North America. Zoonoses Public Health. 2021;68:638–649. doi: 10.1111/zph.12853. PubMed DOI
Wang X, Jordan IK, Mayer LW (2015) A phylogenetic perspective on molecular epidemiology. Mol Med Microbiol (Elsevier) 517–536. 10.1016/B978-0-12-397169-2.00029-9
Wassenaar TM, Fernandez-Astorga A, Alonso R, et al. Comparison of campylobacter fla -SVR genotypes isolated from humans and poultry in three European regions. Lett Appl Microbiol. 2009;49:388–395. doi: 10.1111/j.1472-765X.2009.02678.x. PubMed DOI
Yamada K, Ibata A, Suzuki M, et al. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method. J Infect Chemother. 2015;21:50–54. doi: 10.1016/j.jiac.2014.09.003. PubMed DOI
Zankari E, Allesoe R, Joensen KG, et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72:2764–2768. doi: 10.1093/jac/dkx217. PubMed DOI PMC