A Rapid Culture Method for the Detection of Campylobacter from Water Environments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34198825
PubMed Central
PMC8200967
DOI
10.3390/ijerph18116098
PII: ijerph18116098
Knihovny.cz E-zdroje
- Klíčová slova
- Campylobacter, centrifugation, culture method, filtration, surface water, wastewater,
- MeSH
- Campylobacter coli * MeSH
- Campylobacter jejuni * MeSH
- Campylobacter * MeSH
- kultivační média MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
- voda MeSH
The natural environment and water are among the sources of Campylobacter jejuni and Campylobacter coli. A limited number of protocols exist for the isolation of campylobacters in poorly filterable water. Therefore, the goal of our work was to find a more efficient method of Campylobacter isolation and detection from wastewater and surface water than the ISO standard. In the novel rapid culture method presented here, samples are centrifuged at high speed, and the resuspended pellet is inoculated on a filter, which is placed on Campylobacter selective mCCDA agar. The motile bacteria pass through the filter pores, and mCCDA agar suppresses the growth of background microbiota on behalf of campylobacters. This culture-based method is more efficient for the detection and isolation of Campylobacter jejuni and Campylobacter coli from poorly filterable water than the ISO 17995 standard. It also is less time-consuming, taking only 72 h and comprising three steps, while the ISO standard method requires five or six steps and 144-192 h. This novel culture method, based on high-speed centrifugation, bacterial motility, and selective cultivation conditions, can be used for the detection and isolation of various bacteria from water samples.
Zobrazit více v PubMed
Campylobacter Sebald and Véron 1963 (Approved Lists 1980) [(accessed on 3 October 2020)]; Available online: https://lpsn.dsmz.de/genus/campylobacter.
European Food Safety Authority. European Centre for Disease Prevention and Control The European Union One Health 2018 Zoonoses Report. EFSA J. 2019;17:e05926. doi: 10.2903/j.efsa.2019.5926. PubMed DOI PMC
Igwaran A., Okoh A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon. 2019;5:e02814. doi: 10.1016/j.heliyon.2019.e02814. PubMed DOI PMC
Ghosh R., Uppal B., Aggarwal P., Chakravarti A., Jha A.K., Dubey A.P. A comparative study of conventional and molecular techniques in diagnosis of Campylobacter gastroenteritis in children. Ann. Clin. Lab. Sci. 2014;44:42–48. PubMed
Koga M., Ang C.W., Yuki N., Jacobs C., Herbrink P., Van Der Meché G.A., Hirata K., Van Doorn P.A. Comparative study of preceding Campylobacter jejuni infection in Guillain-Barré syndrome in Japan and The Netherlands. J. Neurol. Neurosurg. Psychiatry. 2001;70:693–695. doi: 10.1136/jnnp.70.5.693. PubMed DOI PMC
Nyati K.K., Nyati R. Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré syndrome: An update. BioMed Res. Int. 2013;2013:852195. doi: 10.1155/2013/852195. PubMed DOI PMC
Young K.Y., Davis L.M., DiRita V.J. Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol. 2007;5:665–679. doi: 10.1038/nrmicro1718. PubMed DOI
Burnham P.M., Hendrixson D.R. Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nat. Rev. Microbiol. 2018;16:551–565. doi: 10.1038/s41579-018-0037-9. PubMed DOI
Pattis I., Moriarty E., Billington C., Gilpin B., Hodson R., Ward N. Concentrations of Campylobacter spp., Escherichia coli, Enterococci, and Yersinia spp. in the Feces of Farmed Red Deer in New Zealand. J. Environ. Qual. 2017;46:819–827. doi: 10.2134/jeq2017.01.0002. PubMed DOI
Hald B., Skov M.N., Nielsen E.M., Rahbek C., Madsen J.J., Wainø M., Chriél M., Nordentoft S., Baggesen D.L., Madsen M. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms. Acta Vet. Scand. 2016;58:11. doi: 10.1186/s13028-016-0192-9. PubMed DOI PMC
Moore J., Corcoran D., Dooley J., Fanning S., Lucey B., Matsuda M., McDowell D., Mégraud F., Millar B., O’Mahony R., et al. Campylobacter . Vet. Res. 2005;36:351–382. doi: 10.1051/vetres:2005012. PubMed DOI
Nag R., Whyte P., Markey B.K., O’Flaherty V., Bolton D., Fenton O., Richards K.G., Cummins E. Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Sci. Total Environ. 2020;710:136297. doi: 10.1016/j.scitotenv.2019.136297. PubMed DOI PMC
Ugarte-Ruiz M., Florez-Cuadrado D., Wassenaar T.M., Porrero M.C., Domínguez L. Method Comparison for Enhanced Recovery, Isolation and Qualitative Detection of C. jejuni and C. coli from Wastewater Effluent Samples. Int. J. Environ. Res. Public Health. 2015;12:2749–2764. doi: 10.3390/ijerph120302749. PubMed DOI PMC
Koenraad P.M.F.J., Rombouts F.M., Notermans S.H.W. Epidemiological aspects of thermophilic Campylobacter in water-related environments: A review. Water Environ. Res. 1997;69:52–63. doi: 10.2175/106143097X125182. DOI
Jokinen C., Edge T.A., Ho S., Koning W., Laing C., Mauro W., Medeiros D., Miller J., Robertson W., Taboada E., et al. Molecular subtypes of Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada. Water Res. 2011;45:1247–1257. doi: 10.1016/j.watres.2010.10.001. PubMed DOI
Pitkänen T. Review of campylobacter spp. in drinking and environmental waters. J. Microbiol. Methods. 2013;95:39–47. doi: 10.1016/j.mimet.2013.06.008. PubMed DOI
Itoh S., Zhou L. Effect of unboiled water consumption data on sensitivity analysis in quantitative microbial risk assessment. NPJ Clean Water. 2018;1:18. doi: 10.1038/s41545-018-0018-6. DOI
Arimi S.M., Fricker C.R., Park R.W.A. Occurrence of “thermophilic” campylobacters in sewage and their removal by treatment processes. Epidemiol. Infect. 1988;101:279–286. doi: 10.1017/S0950268800054194. PubMed DOI PMC
Marti E., Jofre J., Balcazar J.L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS ONE. 2013;8:e78906. doi: 10.1371/journal.pone.0078906. PubMed DOI PMC
Schönberg-Norio D., Takkinen J., Hänninen M.-L., Katila M.-L., Kaukoranta S.-S., Mattila L., Rautelin H. Swimming and Campylobacter Infections. Emerg. Infect. Dis. 2004;10:1474–1477. doi: 10.3201/eid1008.030924. PubMed DOI PMC
Rechenburg A., Kistemann T. Sewage effluent as a source of Campylobacter spp. in a surface water catchment. Int. J. Environ. Health Res. 2009;19:239–249. doi: 10.1080/09603120802460376. PubMed DOI
Abulreesh H.H., Paget T.A., Goulder R. A pre-enrichment step is essential for detection of Campylobacter spp. in turbid pond water. Trop. Biomed. 2014;31:320–326. doi: 10.1016/j.watres.2005.05.004. PubMed DOI
International Organization for Standardisation . Water Quality—Detection and Enumeration of Thermotolerant Campylobacter Species—ISO 17995. ISO; Geneva, Switzerland: 2005.
Bang D.D., Wedderkopp A., Pedersen K., Madsen M. Rapid PCR using nested primers of the 16s rRNA and the hippuricase (hipO) genes to detect Campylobacter jejuni and Campylobacter coli in environmental samples. Mol. Cell. Probes. 2002;16:359–369. doi: 10.1006/mcpr.2002.0434. PubMed DOI
Linton D., Lawson A.J., Owen R.J., Stanley J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 1997;35:2568–2572. doi: 10.1128/JCM.35.10.2568-2572.1997. PubMed DOI PMC
Mughini-Gras L., Penny C., Ragimbeau C., Schets F.M., Blaak H., Duim B., Wagenaar J.A., de Boer A., Cauchie H.M., Mossong J., et al. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 2016;101:36–45. doi: 10.1016/j.watres.2016.05.069. PubMed DOI
International Organization for Standardisation . Water Quality—Detection and Enumeration of Thermotolerant Campylobacter spp.—ISO 17995:2019. ISO; Geneva, Switzerland: 2019.
Winters D.K., O’Leary A.E., Slavik M.F. Polymerase chain reaction for rapid detection of Campylobacter jejuni in artificially contaminated foods. Lett. Appl. Microbiol. 1998;27:163–167. doi: 10.1046/j.1472-765X.1998.00411.x. PubMed DOI
Wolfe A.J., Berg H.C. Migration of bacteria in semisolid agar. Proc. Natl. Acad. Sci. USA. 1989;86:6973–6977. doi: 10.1073/pnas.86.18.6973. PubMed DOI PMC
Marini E., Magi G., Ferretti G., Bacchetti T., Giuliani A., Pugnaloni A., Rippo M.R., Facinelli B. Attenuation of Listeria monocytogenes virulence by Cannabis sativa L. Essential oil. Front. Cell. Infect. Microbiol. 2018;8:1–11. doi: 10.3389/fcimb.2018.00293. PubMed DOI PMC
International Organization for Standardisation . ISO 16140-4:2020: Microbiology of the Food Chain—Method Validation—Part 4: Protocol for Method Validation in a Single Laboratory. ISO; Geneva, Switzerland: 2020.
Hanninen M., Haajanen H., Pummi T., Wermundsen K., Katila M., Sarkkinen H., Miettinen I., Rautelin H. Detection and Typing of Campylobacter jejuni and Campylobacter coli and Analysis of Indicator Organisms in Three Waterborne Outbreaks in Finland. Appl. Environ. Microbiol. 2003;69:1391–1396. doi: 10.1128/AEM.69.3.1391-1396.2003. PubMed DOI PMC
Nygård K., Andersson Y., Røttingen J.A., Svensson Å., Lindbäck J., Kistemann T., Giesecke J. Association between environmental risk factors and Campylobacter infections in Sweden. Epidemiol. Infect. 2004;132:317–325. doi: 10.1017/S0950268803001900. PubMed DOI PMC
Vereen E., Lowrance R.R., Cole D.J., Lipp E.K. Distribution and Ecology of Campylobacters in Coastal Plain Streams (Georgia, United States of America) Appl. Environ. Microbiol. 2007;73:1395–1403. doi: 10.1128/AEM.01621-06. PubMed DOI PMC
Black R.E., Levine M.M., Clements M.L., Hughes T.P., Blaser M.J. Experimental Campylobacter jejuni Infection in Humans. J. Infect. Dis. 1988;157:472–479. doi: 10.1093/infdis/157.3.472. PubMed DOI
Sales-Ortells H., Agostini G., Medema G. Quantification of Waterborne Pathogens and Associated Health Risks in Urban Water. Environ. Sci. Technol. 2015;49:6943–6952. doi: 10.1021/acs.est.5b00625. PubMed DOI
Phiri B.J., French N.P., Biggs P.J., Stevenson M.A., Reynolds A.D., Garcia-R J.C., Hayman D.T.S. Microbial contamination in drinking water at public outdoor recreation facilities in New Zealand. J. Appl. Microbiol. 2021;130:302–312. doi: 10.1111/jam.14772. PubMed DOI
Li J., Zhao X., Tian X., Li J., Sjollema J., Wang A. Retention in treated wastewater affects survival and deposition of Staphylococcus aureus and Escherichia coli in sand columns. Appl. Environ. Microbiol. 2015;81:2199–2205. doi: 10.1128/AEM.03740-14. PubMed DOI PMC
Nachamkin I., Szymanski C., Blaser M.J. In: Campylobacter. 3rd ed. Nachamkin I., Szymanski C., Blaser M.J., editors. ASM Press; Washington, DC, USA: 2008.
Ferrari S., Frosth S., Svensson L., Fernström L.L., Skarin H., Hansson I. Detection of Campylobacter spp. in water by dead-end ultrafiltration and application at farm level. J. Appl. Microbiol. 2019;127:1270–1279. doi: 10.1111/jam.14379. PubMed DOI PMC
De Beer D.M., Botes M., Cloete T.E. The microbial community of a biofilm contact reactor for the treatment of winery wastewater. J. Appl. Microbiol. 2018;124:598–610. doi: 10.1111/jam.13654. PubMed DOI
Dong P., Cui Q., Fang T., Huang Y., Wang H. Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water. J. Environ. Sci. 2019;77:65–74. doi: 10.1016/j.jes.2018.06.011. PubMed DOI
Baffone W., Casaroli A., Citterio B., Pierfelici L., Campana R., Vittoria E., Guaglianone E., Donelli G. Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. Int. J. Food Microbiol. 2006;107:83–91. doi: 10.1016/j.ijfoodmicro.2005.08.015. PubMed DOI
Williams L.K., Jørgensen F., Grogono-Thomas R., Humphrey T.J. Enrichment culture for the isolation of Campylobacter spp.: Effects of incubation conditions and the inclusion of blood in selective broths. Int. J. Food Microbiol. 2009;130:131–134. doi: 10.1016/j.ijfoodmicro.2009.01.018. PubMed DOI
Blaser M.J., Cody H.J. Methods for isolating Campylobacter jejuni from low-turbidity water. Appl. Environ. Microbiol. 1986;51:312–315. doi: 10.1128/AEM.51.2.312-315.1986. PubMed DOI PMC
Vesga F.J., Moreno Y., Ferrús M.A., Campos C., Trespalacios A.A. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá Colombia, using cultural and molecular techniques. Int. J. Hyg. Environ. Health. 2018;221:595–601. doi: 10.1016/j.ijheh.2018.04.010. PubMed DOI
Liu Z., Carroll Z.S., Long S.C., Roa-Espinosa A., Runge T. Centrifuge separation effect on bacterial indicator reduction in dairy manure. J. Environ. Manag. 2017;191:268–274. doi: 10.1016/j.jenvman.2017.01.022. PubMed DOI
Malorny B., Hoorfar J., Hugas M., Heuvelink A., Fach P., Ellerbroek L., Bunge C., Dorn C., Helmuth R. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int. J. Food Microbiol. 2003;89:241–249. doi: 10.1016/S0168-1605(03)00154-5. PubMed DOI
Genotyping of Campylobacter jejuni and prediction tools of its antimicrobial resistance