• Je něco špatně v tomto záznamu ?

Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination

C. Han, L. Machala, I. Medrik, R. Prucek, RP. Kralchevska, DD. Dionysiou,

. 2017 ; 24 (23) : 19435-19443. [pub] 20170704

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001234
E-zdroje Online Plný text

NLK ProQuest Central od 1997-03-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-03-01 do Před 1 rokem
Public Health Database (ProQuest) od 1997-03-01 do Před 1 rokem

In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5-20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, and UV-visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-Fe2O3 and γ-Fe2O3), particle size distribution (5-20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m2 g-1 for MG-9 and 207 m2 g-1 for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L-1 due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-Fe2O3 gives a possibility for an easy separation of the catalyst particles after their use.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001234
003      
CZ-PrNML
005      
20190108130637.0
007      
ta
008      
190107s2017 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11356-017-9566-4 $2 doi
035    __
$a (PubMed)28677041
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Han, Changseok $u Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA.
245    10
$a Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination / $c C. Han, L. Machala, I. Medrik, R. Prucek, RP. Kralchevska, DD. Dionysiou,
520    9_
$a In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5-20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, and UV-visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-Fe2O3 and γ-Fe2O3), particle size distribution (5-20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m2 g-1 for MG-9 and 207 m2 g-1 for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L-1 due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-Fe2O3 gives a possibility for an easy separation of the catalyst particles after their use.
650    _2
$a adsorpce $7 D000327
650    _2
$a karcinogeny $x chemie $7 D002273
650    _2
$a katalýza $7 D002384
650    _2
$a železité sloučeniny $x chemie $7 D005290
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    12
$a světlo $7 D008027
650    _2
$a magnetické nanočástice $x chemie $7 D058185
650    _2
$a mikrocystiny $x chemie $x metabolismus $7 D052998
650    _2
$a velikost částic $7 D010316
650    _2
$a povrchové vlastnosti $7 D013499
655    _2
$a časopisecké články $7 D016428
700    1_
$a Machala, Libor $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic. libor.machala@upol.cz.
700    1_
$a Medrik, Ivo $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
700    1_
$a Prucek, Robert $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
700    1_
$a Kralchevska, Radina P $u Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
700    1_
$a Dionysiou, Dionysios D $u Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA. dionysios.d.dionysiou@uc.edu.
773    0_
$w MED00001558 $t Environmental science and pollution research international $x 1614-7499 $g Roč. 24, č. 23 (2017), s. 19435-19443
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28677041 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190108130838 $b ABA008
999    __
$a ok $b bmc $g 1365127 $s 1039357
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 24 $c 23 $d 19435-19443 $e 20170704 $i 1614-7499 $m Environmental science and pollution research international $n Environ. sci. pollut. res. int. $x MED00001558
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...