• This record comes from PubMed

Effect of Lipopolysaccharide and Muramyl Dipeptide on Apoptosis of Bovine Mammary Gland Lymphocytes

. 2020 Jun 05 ; 10 (6) : . [epub] 20200605

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
AF-IGA-2018-tym002 Mendelova Univerzita v Brně
QK1910212 Ministerstvo Zemědělství
APVV-18-0121 Agentúra na Podporu Výskumu a Vývoja

The aim of this study was to evaluate whether apoptosis of lymphocytes is modulated by stimulation by lipopolysaccharide (LPS) of Escherichia coli or muramyl dipeptide (MDP). Cell populations were obtained by lavaging of the mammary glands 24, 48, 72, and 168 hours following intramammary induced inflammation. The portion of apoptotic lymphocytes peaked at 48 hours after treatment with LPS or MDP. The analysis of CD44 expression of the same cell populations showed a higher percentage of CD44-positive lymphocytes 24- and 48-hours following induction of inflammation by LPS or MDP. The results demonstrate that during both experimental infection of bovine mammary glands with LPS or MDP, apoptosis of lymphocytes was induced in the initial phase of the inflammatory response and CD44 was also overexpressed at the beginning of inflammation. These data suggest a connection of lymphocyte apoptosis with the expression of CD44 receptors.

See more in PubMed

Sadeghi-Sefidmazgi A., Moradi-Shahrbabak M., Nejati-Javaremi A., Miraei-Ashtiani S.R., Amer P.R. Estimation of economic values and financial losses associated with clinical mastitis and somatic cell score in Holstein dairy cattle. Animal. 2011;5:33–42. doi: 10.1017/S1751731110001655. PubMed DOI

Kvapilik J., Hanus O., Barton L., Klimesova M.V., Roubal P. Mastitis of dairy cows and financial losses: An economic meta-analysis and model calculation. Bulg. J. Anim. Sci. 2015;21:1092–1105.

Romero J., Benavides E., Meza C. Assessing financial impacts of subclinical mastitis on Colombian Dairy farms. Front. Vet. Sci. 2018;5:273. doi: 10.3389/fvets.2018.00273. PubMed DOI PMC

Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. 8th ed. Elsevier Saunders; Philadelphia, PA, USA: 2015. pp. 52–63.

Liu G., Ding L., Han B., Piepers S., Naqvi S.A., Barkema H.W., Ali T., de Vliegher S., Xu S., Gao J. Characteristics of Escherichia coli isolated from bovine mastitis exposed to subminimum inhibitory concentrations of cefalotin or ceftazidime. Biomed. Res. Int. 2018 doi: 10.1155/2018/4301628. PubMed DOI PMC

Zadoks R.N., Middleton J.R., McDougall S., Katholm J., Schukken Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia. 2011;16:357–372. doi: 10.1007/s10911-011-9236-y. PubMed DOI PMC

Singh S.K. Staphylococcus aureus intracellular survival: A closer look in the process. Virulence. 2017;8:1506–1507. doi: 10.1080/21505594.2017.1384896. PubMed DOI PMC

Almeida R.A., Luther D.A., Park H.M., Oliver S.P. Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM) Vet. Microbiol. 2006;115:183–191. doi: 10.1016/j.vetmic.2006.02.005. PubMed DOI

Almeida R.A., Dunlap J.R., Oliver S.P. Binding of host factors influences internalization and intracellular trafficking of Streptococcus uberis in bovine mammary epithelial cells. Vet. Med. Int. 2010 doi: 10.4061/2010/319192. PubMed DOI PMC

Almeida R.A., Kerro-Dego O., Headrick S.I., Lewis M.J., Oliver S.P. Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis. Vet. Microbiol. 2015;179:332–335. doi: 10.1016/j.vetmic.2015.07.005. PubMed DOI

Almeida R.A., Kerro-Dego O., Prado M.E., Headrick S.I., Lewis M.J., Siebert L.J., Pighetti G.M., Oliver S.P. Protective effect of anti-SUAM antibodies on Streptococcus uberis mastitis. Vet. Res. 2015;46:133. doi: 10.1186/s13567-015-0271-3. PubMed DOI PMC

Reinoso E.B. Bovine mastitis caused by Streptococcus uberis: Virulence factors and biofilm. J. Microb. Biochem. Technol. 2017;9:5.

Hotchkiss R.S., Coopersmith C.M., Karl I.E. Prevention of lymphocyte apoptosis—A potential treatment of sepsis? Clin. Infect. Dis. 2005;41(Suppl. S7):S465–S469. doi: 10.1086/431998. PubMed DOI

Carol M., Borruel N., Antolin M., Llopis M., Casellas F., Guarner F., Malagelada J.R. Modulation of Apoptosis in Intestinal Lymphocytes by a Probiotic Bacteria in Crohn’s Disease. J. Leukoc. Biol. 2006;79:917–922. doi: 10.1189/jlb.0405188. PubMed DOI

Slama P., Sladek Z., Rysanek D., Langrova T. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res. Vet. Sci. 2009;87:233–238. doi: 10.1016/j.rvsc.2009.03.005. PubMed DOI

Slama P., Zavadilova T., Kratochvilova L., Kharkevich K., Uhrincat M., Tancin V. Effect of peptidoglycan of Staphylococcus Aureus on apoptosis of bovine mammary gland lymphocytes. J. Microbiol. Biotech. Food Sci. 2019;9(S):445–446. doi: 10.15414/jmbfs.2019.9.special.445-446. DOI

Leitner G., Chaffer M., Krifucks O., Glickman A., Ezra E., Saran A. Milk leucocyte populations in heifers free of udder infection. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2000;47:133–138. doi: 10.1046/j.1439-0450.2000.00329.x. PubMed DOI

Faldyna M., Leva L., Sladek Z., Rysanek D., Toman M. γδ-TCR+CD2– lymphocytes are recruited into bovine mammary gland after stimulation. Vet. Med. Czech. 2006;51:258–264. doi: 10.17221/5545-VETMED. DOI

Sustrova T., Slama P. The effect of Staphylococcus aureus bacteria to proportion of gamma delta T-lymphocytes from bovine mammary gland. In: Skarpa P., Ryant P., Cerkal R., Polak O., Kovarnik J., editors. MENDELNET 2013, Proceedings of the 20th International PhD Students Conference MENDELNET 2013, Brno, Czech Republic, 20–21 November 2013. Mendel University in Brno; Brno, Czech Republic: 2013. pp. 788–792.

Slama P., Sladek Z., Kabourkova E., Havlicek Z., Kwak J.Y. Apoptosis of gamma delta T cells during inflammatory response of bovine mammary gland induced by Staphylococcus aureus. Eur. J. Immunol. 2016;46(Suppl. S1):495.

Zouharova M., Rysanek D. Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses Public Health. 2008;55:313–319. doi: 10.1111/j.1863-2378.2008.01134.x. PubMed DOI

Haslinger B., Strangfeld K., Peters G., Schulze-Osthoff K., Sinha B. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: Role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell. Microbiol. 2003;5:729–741. doi: 10.1046/j.1462-5822.2003.00317.x. PubMed DOI

Park Y.H., Lee S.U., Ferens W.A., Samuels S., Davis W.C., Fox L.K., Ahn J.S., Seo K.S., Chang B.S., Hwang S.Y., et al. Unique features of bovine lymphocytes exposed to a staphylococcal enterotoxin. J. Vet. Sci. 2006;7:233–239. doi: 10.4142/jvs.2006.7.3.233. PubMed DOI PMC

Lesley J., Hyman R. CD44 structure and function. Front. Biosci. 1998;3:D616–D630. doi: 10.2741/A306. PubMed DOI

Jordan A.R., Racine R.R., Hennig M.J.P., Lokeshwar V.B. The role of CD44 in disease pathophysiology and targeted treatment. Front. Immunol. 2015;6:182. doi: 10.3389/fimmu.2015.00182. PubMed DOI PMC

Xu H., Tian Y., Yuan X., Wu H., Liu Q., Pestell R.G., Wu K.M. The role of CD44 in epithelial-mesenchymal transition and cancer development. OncoTargets Ther. 2015;16:3783–3792. PubMed PMC

Naor D. Interaction Between Hyaluronic acid and its receptors (Cd44, rHaMM) regulates the activity of inflammation and Cancer. Front. Immunol. 2016;7:39. doi: 10.3389/fimmu.2016.00039. PubMed DOI PMC

Schrager H.M., Alberti S., Cywes C., Dougherty G.J., Wessels M.R. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Investig. 1998;101:1708–1716. doi: 10.1172/JCI2121. PubMed DOI PMC

Langrova T., Sladek Z., Rysanek D. Expression of CD14 and CD44 on bovine polymorphonuclear leukocytes during resolution of mammary inflammatory response induced by muramyldipeptide and lipopolysaccharide. Vet. Med. Czech. 2008;53:1–11. doi: 10.17221/1935-VETMED. DOI

Sladek Z., Rysanek D. Expression of macrophage CD44 receptor in the course of experimental inflammatory response of bovine mammary gland induced by lipopolysaccharide and muramyl dipeptide. Res. Vet. Sci. 2009;86:235–240. doi: 10.1016/j.rvsc.2008.07.016. PubMed DOI

Zavadilova T., Sladek Z., Kratochvilova L., Slama P., Rysanek D. The effect of muramyl dipeptide and lipopolysaccharide on expression of CD14 and CD44 by bovine mammary gland neutrophils in vitro. J. Microbiol. Biotech. Food Sci. 2019;9(S):467–472. doi: 10.15414/jmbfs.2019.9.special.467-472. DOI

Sladek Z., Rysanek D., Faldyna M. Activation of phagocytes during initiation and resolution of mammary gland injury induced by lipopolysaccharide in heifers. Vet. Res. 2002;33:191–204. doi: 10.1051/vetres:2002007. PubMed DOI

Vermes I., Haanen C., Steffens-Nakken H., Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods. 1995;184:39–51. doi: 10.1016/0022-1759(95)00072-I. PubMed DOI

Sladek Z., Rysanek D. Expression of macrophage CD14 receptor in the course of experimental inflammatory responses induced by lipopolysaccharide and muramyl dipeptide. Vet. Med. Czech. 2008;53:347–357. doi: 10.17221/1991-VETMED. PubMed DOI

Slama P., Zavadilova T., Kratochvilova L., Kharkevich K. Effect of peptidoglycan on expression of CD44 on bovine mammary gland lymphocytes. J. Microbiol. Biotech. Food Sci. 2019;9(S):447–448. doi: 10.15414/jmbfs.2019.9.special.447-448. DOI

Pilon-Thomas S., Verhaegen M., Kuhn L., Riker A., Mule J.J. Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells. Cancer Immunol. Immunother. 2006;55:1238–1246. doi: 10.1007/s00262-005-0104-8. PubMed DOI PMC

Rajasagi M., von Au A., Singh R., Hartmann N., Zoller M., Marhaba R. Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J. Cell Mol. Med. 2010;14:1453–1467. doi: 10.1111/j.1582-4934.2009.00909.x. PubMed DOI PMC

Baaten B.J.G., Li C.R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010;3:508–512. doi: 10.4161/cib.3.6.13495. PubMed DOI PMC

Pedersen I.M., Kitada S., Leoni L.M., Zapata J.M., Karras J.G., Tsukada N., Kipps T.J., Choi Y.S., Bennett F., Reed J.C. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood. 2002;100:1795–1801. doi: 10.1182/blood.V100.5.1795.h81702001795_1795_1801. PubMed DOI

Herishanu Y., Gibellini F., Njuguna N., Hazan-Halevy I., Farooqui M., Bern S., Keyvanfar K., Lee E., Wilson W., Wiestner A. Activation of CD44, a receptor for extracellular matrix components, protects chronic lymphocytic leukemia cells from spontaneous and drug induced apoptosis through MCL-1. Leuk. Lymphoma. 2011;52:1758–1769. doi: 10.3109/10428194.2011.569962. PubMed DOI PMC

Fedorchenko O., Stiefelhagen M., Peer-Zada A.A., Barthel R., Mayer P., Eckei L., Breuer A., Crispatzu G., Rosen N., Landwehr T., et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood. 2013;121:4126–4136. doi: 10.1182/blood-2012-11-466250. PubMed DOI

Zhang S.P., Wum C., Farrah-Fecteau J., Cul B., Chen L., Zhang L., Wu R., Rassenti L., Lao F., Weigand S., et al. Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc. Natl. Acad. Sci. USA. 2013;110:6127–6132. doi: 10.1073/pnas.1221841110. PubMed DOI PMC

Gutjahr J.C., Greil R., Hartmann T.N. The role of CD44 in the pathophysiology of chronic lymphocytic leukemia. Front. Immunol. 2015;6:177. doi: 10.3389/fimmu.2015.00177. PubMed DOI PMC

Lin Y.H., Yang-Yen H.F. The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Biol. Chem. 2001;276:46024–46030. doi: 10.1074/jbc.M105132200. PubMed DOI

Nakano K., Saito K., Mine S., Matsushita S., Tanaka Y. Engagement of CD44 upregulates Fas Ligand expression on T cells leading to activation-induced cell death. Apoptosis. 2007;12:45–54. doi: 10.1007/s10495-006-0488-8. PubMed DOI

Ruffell B., Johnson P. Hyaluronan induces cell death in activated T cells through CD44. J. Immunol. 2008;181:7044–7054. doi: 10.4049/jimmunol.181.10.7044. PubMed DOI

Mielgo A., van Driel M., Bloem A., Landmann L., Gunthert U. A novel antiapoptotic mechanism based on interference of fas signaling by CD44 variant isoforms. Cell Death Differ. 2006;13:465–477. doi: 10.1038/sj.cdd.4401763. PubMed DOI

Foger N., Marhaba R., Zoller M. CD44 supports T cell proliferation and apoptosis by apposition of protein kinases. Eur. J. Immunol. 2000;30:2888–2899. doi: 10.1002/1521-4141(200010)30:10<2888::AID-IMMU2888>3.0.CO;2-4. PubMed DOI

Assayag-Asherie N., Sever D., Bogdani M., Johnson P., Weiss T., Ginzberg A., Perles S., Weiss L., Sebban L.E., Turley E.A., et al. Can CD44 be a mediator of cell destruction? The challenge of type 1 diabetes. PLoS ONE. 2015;10:e0143589. doi: 10.1371/journal.pone.0143589. PubMed DOI PMC

Lewis T.S., Shapiro P.S., Ahn N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998;74:49. PubMed

Gee L., Lim W., Ma W., Nandan D., Diaz-Mitoma F., Kozlowski M., Kumar A. Differential regulation of CD44 expression by Lipopolysaccharide (LPS) and TNF-α in human monocytic cells: Distinct involvement of c-Jun N-Terminal kinase in LPS-Induced CD44 expression. J. Immunol. 2002;169:5660–5672. doi: 10.4049/jimmunol.169.10.5660. PubMed DOI

Sohn E.J., Paape M.J., Connor E.E., Bannerman D.D., Fetterer R.H., Peters R.R. Bacterial lipopolysaccharide stimulates bovine neutrophil production of TNF-alpha, IL-1beta, IL-12 and IFN-gamma. Vet. Res. 2007;38:809–818. doi: 10.1051/vetres:2007033. PubMed DOI

Kratochvilova L., Kharkevich K., Slama P. TNF-alpha and IL-10 are produced by leukocytes during the experimental inflammatory response of bovine mammary gland induced by peptidoglycan. In: Cerkal R., Belcredi N.B., Prokesova L., editors. MENDELNET 2018, Proceedings of the 25th International PhD Students Conference MENDELNET 2018, Brno, Czech Republic, 7–8 November 2018. Mendel University in Brno; Brno, Czech Republic: 2018. pp. 376–379.

Salguero F.J., Sanchez-Cordon P.J., Nunez A., de Marco M.F., Gomez-Villamandos J.C. Proinflammatory cytokines induce lymphocyte apoptosis in acute african swine fever infection. J. Comp. Path. 2005;132:289–302. doi: 10.1016/j.jcpa.2004.11.004. PubMed DOI

Normanton M., Alvarenga H., Hamerschlak N., Ribeiro A., Kondo A., Rizzo L.V., Marti L.C. Interleukin 7 plays a role in T lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion. PLoS ONE. 2014;9:e106673. doi: 10.1371/journal.pone.0106673. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Effect of Streptococcus uberis on Gamma Delta T Cell Phenotype in Bovine Mammary Gland

. 2021 Dec 19 ; 11 (12) : . [epub] 20211219

Apoptosis of Eosinophil Granulocytes

. 2020 Dec 10 ; 9 (12) : . [epub] 20201210

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...