Effect of Lipopolysaccharide and Muramyl Dipeptide on Apoptosis of Bovine Mammary Gland Lymphocytes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
AF-IGA-2018-tym002
Mendelova Univerzita v Brně
QK1910212
Ministerstvo Zemědělství
APVV-18-0121
Agentúra na Podporu Výskumu a Vývoja
PubMed
32517153
PubMed Central
PMC7341217
DOI
10.3390/ani10060990
PII: ani10060990
Knihovny.cz E-resources
- Keywords
- CD44, Escherichia coli, apoptosis, lipopolysaccharide, lymphocyte, mammary gland, mastitis, muramyl dipeptide,
- Publication type
- Journal Article MeSH
The aim of this study was to evaluate whether apoptosis of lymphocytes is modulated by stimulation by lipopolysaccharide (LPS) of Escherichia coli or muramyl dipeptide (MDP). Cell populations were obtained by lavaging of the mammary glands 24, 48, 72, and 168 hours following intramammary induced inflammation. The portion of apoptotic lymphocytes peaked at 48 hours after treatment with LPS or MDP. The analysis of CD44 expression of the same cell populations showed a higher percentage of CD44-positive lymphocytes 24- and 48-hours following induction of inflammation by LPS or MDP. The results demonstrate that during both experimental infection of bovine mammary glands with LPS or MDP, apoptosis of lymphocytes was induced in the initial phase of the inflammatory response and CD44 was also overexpressed at the beginning of inflammation. These data suggest a connection of lymphocyte apoptosis with the expression of CD44 receptors.
Department of Immunology Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Department of Life Science and Bioinformatics Assam University Silchar 788 011 India
Department of Pharmacology School of Medicine Ajou University Suwon 16499 Korea
NPPC Research Institute for Animal Production Hlohovecka 2 951 41 Luzianky Slovakia
See more in PubMed
Sadeghi-Sefidmazgi A., Moradi-Shahrbabak M., Nejati-Javaremi A., Miraei-Ashtiani S.R., Amer P.R. Estimation of economic values and financial losses associated with clinical mastitis and somatic cell score in Holstein dairy cattle. Animal. 2011;5:33–42. doi: 10.1017/S1751731110001655. PubMed DOI
Kvapilik J., Hanus O., Barton L., Klimesova M.V., Roubal P. Mastitis of dairy cows and financial losses: An economic meta-analysis and model calculation. Bulg. J. Anim. Sci. 2015;21:1092–1105.
Romero J., Benavides E., Meza C. Assessing financial impacts of subclinical mastitis on Colombian Dairy farms. Front. Vet. Sci. 2018;5:273. doi: 10.3389/fvets.2018.00273. PubMed DOI PMC
Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. 8th ed. Elsevier Saunders; Philadelphia, PA, USA: 2015. pp. 52–63.
Liu G., Ding L., Han B., Piepers S., Naqvi S.A., Barkema H.W., Ali T., de Vliegher S., Xu S., Gao J. Characteristics of Escherichia coli isolated from bovine mastitis exposed to subminimum inhibitory concentrations of cefalotin or ceftazidime. Biomed. Res. Int. 2018 doi: 10.1155/2018/4301628. PubMed DOI PMC
Zadoks R.N., Middleton J.R., McDougall S., Katholm J., Schukken Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia. 2011;16:357–372. doi: 10.1007/s10911-011-9236-y. PubMed DOI PMC
Singh S.K. Staphylococcus aureus intracellular survival: A closer look in the process. Virulence. 2017;8:1506–1507. doi: 10.1080/21505594.2017.1384896. PubMed DOI PMC
Almeida R.A., Luther D.A., Park H.M., Oliver S.P. Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM) Vet. Microbiol. 2006;115:183–191. doi: 10.1016/j.vetmic.2006.02.005. PubMed DOI
Almeida R.A., Dunlap J.R., Oliver S.P. Binding of host factors influences internalization and intracellular trafficking of Streptococcus uberis in bovine mammary epithelial cells. Vet. Med. Int. 2010 doi: 10.4061/2010/319192. PubMed DOI PMC
Almeida R.A., Kerro-Dego O., Headrick S.I., Lewis M.J., Oliver S.P. Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis. Vet. Microbiol. 2015;179:332–335. doi: 10.1016/j.vetmic.2015.07.005. PubMed DOI
Almeida R.A., Kerro-Dego O., Prado M.E., Headrick S.I., Lewis M.J., Siebert L.J., Pighetti G.M., Oliver S.P. Protective effect of anti-SUAM antibodies on Streptococcus uberis mastitis. Vet. Res. 2015;46:133. doi: 10.1186/s13567-015-0271-3. PubMed DOI PMC
Reinoso E.B. Bovine mastitis caused by Streptococcus uberis: Virulence factors and biofilm. J. Microb. Biochem. Technol. 2017;9:5.
Hotchkiss R.S., Coopersmith C.M., Karl I.E. Prevention of lymphocyte apoptosis—A potential treatment of sepsis? Clin. Infect. Dis. 2005;41(Suppl. S7):S465–S469. doi: 10.1086/431998. PubMed DOI
Carol M., Borruel N., Antolin M., Llopis M., Casellas F., Guarner F., Malagelada J.R. Modulation of Apoptosis in Intestinal Lymphocytes by a Probiotic Bacteria in Crohn’s Disease. J. Leukoc. Biol. 2006;79:917–922. doi: 10.1189/jlb.0405188. PubMed DOI
Slama P., Sladek Z., Rysanek D., Langrova T. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res. Vet. Sci. 2009;87:233–238. doi: 10.1016/j.rvsc.2009.03.005. PubMed DOI
Slama P., Zavadilova T., Kratochvilova L., Kharkevich K., Uhrincat M., Tancin V. Effect of peptidoglycan of Staphylococcus Aureus on apoptosis of bovine mammary gland lymphocytes. J. Microbiol. Biotech. Food Sci. 2019;9(S):445–446. doi: 10.15414/jmbfs.2019.9.special.445-446. DOI
Leitner G., Chaffer M., Krifucks O., Glickman A., Ezra E., Saran A. Milk leucocyte populations in heifers free of udder infection. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2000;47:133–138. doi: 10.1046/j.1439-0450.2000.00329.x. PubMed DOI
Faldyna M., Leva L., Sladek Z., Rysanek D., Toman M. γδ-TCR+CD2– lymphocytes are recruited into bovine mammary gland after stimulation. Vet. Med. Czech. 2006;51:258–264. doi: 10.17221/5545-VETMED. DOI
Sustrova T., Slama P. The effect of Staphylococcus aureus bacteria to proportion of gamma delta T-lymphocytes from bovine mammary gland. In: Skarpa P., Ryant P., Cerkal R., Polak O., Kovarnik J., editors. MENDELNET 2013, Proceedings of the 20th International PhD Students Conference MENDELNET 2013, Brno, Czech Republic, 20–21 November 2013. Mendel University in Brno; Brno, Czech Republic: 2013. pp. 788–792.
Slama P., Sladek Z., Kabourkova E., Havlicek Z., Kwak J.Y. Apoptosis of gamma delta T cells during inflammatory response of bovine mammary gland induced by Staphylococcus aureus. Eur. J. Immunol. 2016;46(Suppl. S1):495.
Zouharova M., Rysanek D. Multiplex PCR and RPLA identification of Staphylococcus aureus enterotoxigenic strains from bulk tank milk. Zoonoses Public Health. 2008;55:313–319. doi: 10.1111/j.1863-2378.2008.01134.x. PubMed DOI
Haslinger B., Strangfeld K., Peters G., Schulze-Osthoff K., Sinha B. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: Role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell. Microbiol. 2003;5:729–741. doi: 10.1046/j.1462-5822.2003.00317.x. PubMed DOI
Park Y.H., Lee S.U., Ferens W.A., Samuels S., Davis W.C., Fox L.K., Ahn J.S., Seo K.S., Chang B.S., Hwang S.Y., et al. Unique features of bovine lymphocytes exposed to a staphylococcal enterotoxin. J. Vet. Sci. 2006;7:233–239. doi: 10.4142/jvs.2006.7.3.233. PubMed DOI PMC
Lesley J., Hyman R. CD44 structure and function. Front. Biosci. 1998;3:D616–D630. doi: 10.2741/A306. PubMed DOI
Jordan A.R., Racine R.R., Hennig M.J.P., Lokeshwar V.B. The role of CD44 in disease pathophysiology and targeted treatment. Front. Immunol. 2015;6:182. doi: 10.3389/fimmu.2015.00182. PubMed DOI PMC
Xu H., Tian Y., Yuan X., Wu H., Liu Q., Pestell R.G., Wu K.M. The role of CD44 in epithelial-mesenchymal transition and cancer development. OncoTargets Ther. 2015;16:3783–3792. PubMed PMC
Naor D. Interaction Between Hyaluronic acid and its receptors (Cd44, rHaMM) regulates the activity of inflammation and Cancer. Front. Immunol. 2016;7:39. doi: 10.3389/fimmu.2016.00039. PubMed DOI PMC
Schrager H.M., Alberti S., Cywes C., Dougherty G.J., Wessels M.R. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Investig. 1998;101:1708–1716. doi: 10.1172/JCI2121. PubMed DOI PMC
Langrova T., Sladek Z., Rysanek D. Expression of CD14 and CD44 on bovine polymorphonuclear leukocytes during resolution of mammary inflammatory response induced by muramyldipeptide and lipopolysaccharide. Vet. Med. Czech. 2008;53:1–11. doi: 10.17221/1935-VETMED. DOI
Sladek Z., Rysanek D. Expression of macrophage CD44 receptor in the course of experimental inflammatory response of bovine mammary gland induced by lipopolysaccharide and muramyl dipeptide. Res. Vet. Sci. 2009;86:235–240. doi: 10.1016/j.rvsc.2008.07.016. PubMed DOI
Zavadilova T., Sladek Z., Kratochvilova L., Slama P., Rysanek D. The effect of muramyl dipeptide and lipopolysaccharide on expression of CD14 and CD44 by bovine mammary gland neutrophils in vitro. J. Microbiol. Biotech. Food Sci. 2019;9(S):467–472. doi: 10.15414/jmbfs.2019.9.special.467-472. DOI
Sladek Z., Rysanek D., Faldyna M. Activation of phagocytes during initiation and resolution of mammary gland injury induced by lipopolysaccharide in heifers. Vet. Res. 2002;33:191–204. doi: 10.1051/vetres:2002007. PubMed DOI
Vermes I., Haanen C., Steffens-Nakken H., Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods. 1995;184:39–51. doi: 10.1016/0022-1759(95)00072-I. PubMed DOI
Sladek Z., Rysanek D. Expression of macrophage CD14 receptor in the course of experimental inflammatory responses induced by lipopolysaccharide and muramyl dipeptide. Vet. Med. Czech. 2008;53:347–357. doi: 10.17221/1991-VETMED. PubMed DOI
Slama P., Zavadilova T., Kratochvilova L., Kharkevich K. Effect of peptidoglycan on expression of CD44 on bovine mammary gland lymphocytes. J. Microbiol. Biotech. Food Sci. 2019;9(S):447–448. doi: 10.15414/jmbfs.2019.9.special.447-448. DOI
Pilon-Thomas S., Verhaegen M., Kuhn L., Riker A., Mule J.J. Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells. Cancer Immunol. Immunother. 2006;55:1238–1246. doi: 10.1007/s00262-005-0104-8. PubMed DOI PMC
Rajasagi M., von Au A., Singh R., Hartmann N., Zoller M., Marhaba R. Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J. Cell Mol. Med. 2010;14:1453–1467. doi: 10.1111/j.1582-4934.2009.00909.x. PubMed DOI PMC
Baaten B.J.G., Li C.R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010;3:508–512. doi: 10.4161/cib.3.6.13495. PubMed DOI PMC
Pedersen I.M., Kitada S., Leoni L.M., Zapata J.M., Karras J.G., Tsukada N., Kipps T.J., Choi Y.S., Bennett F., Reed J.C. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood. 2002;100:1795–1801. doi: 10.1182/blood.V100.5.1795.h81702001795_1795_1801. PubMed DOI
Herishanu Y., Gibellini F., Njuguna N., Hazan-Halevy I., Farooqui M., Bern S., Keyvanfar K., Lee E., Wilson W., Wiestner A. Activation of CD44, a receptor for extracellular matrix components, protects chronic lymphocytic leukemia cells from spontaneous and drug induced apoptosis through MCL-1. Leuk. Lymphoma. 2011;52:1758–1769. doi: 10.3109/10428194.2011.569962. PubMed DOI PMC
Fedorchenko O., Stiefelhagen M., Peer-Zada A.A., Barthel R., Mayer P., Eckei L., Breuer A., Crispatzu G., Rosen N., Landwehr T., et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood. 2013;121:4126–4136. doi: 10.1182/blood-2012-11-466250. PubMed DOI
Zhang S.P., Wum C., Farrah-Fecteau J., Cul B., Chen L., Zhang L., Wu R., Rassenti L., Lao F., Weigand S., et al. Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc. Natl. Acad. Sci. USA. 2013;110:6127–6132. doi: 10.1073/pnas.1221841110. PubMed DOI PMC
Gutjahr J.C., Greil R., Hartmann T.N. The role of CD44 in the pathophysiology of chronic lymphocytic leukemia. Front. Immunol. 2015;6:177. doi: 10.3389/fimmu.2015.00177. PubMed DOI PMC
Lin Y.H., Yang-Yen H.F. The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Biol. Chem. 2001;276:46024–46030. doi: 10.1074/jbc.M105132200. PubMed DOI
Nakano K., Saito K., Mine S., Matsushita S., Tanaka Y. Engagement of CD44 upregulates Fas Ligand expression on T cells leading to activation-induced cell death. Apoptosis. 2007;12:45–54. doi: 10.1007/s10495-006-0488-8. PubMed DOI
Ruffell B., Johnson P. Hyaluronan induces cell death in activated T cells through CD44. J. Immunol. 2008;181:7044–7054. doi: 10.4049/jimmunol.181.10.7044. PubMed DOI
Mielgo A., van Driel M., Bloem A., Landmann L., Gunthert U. A novel antiapoptotic mechanism based on interference of fas signaling by CD44 variant isoforms. Cell Death Differ. 2006;13:465–477. doi: 10.1038/sj.cdd.4401763. PubMed DOI
Foger N., Marhaba R., Zoller M. CD44 supports T cell proliferation and apoptosis by apposition of protein kinases. Eur. J. Immunol. 2000;30:2888–2899. doi: 10.1002/1521-4141(200010)30:10<2888::AID-IMMU2888>3.0.CO;2-4. PubMed DOI
Assayag-Asherie N., Sever D., Bogdani M., Johnson P., Weiss T., Ginzberg A., Perles S., Weiss L., Sebban L.E., Turley E.A., et al. Can CD44 be a mediator of cell destruction? The challenge of type 1 diabetes. PLoS ONE. 2015;10:e0143589. doi: 10.1371/journal.pone.0143589. PubMed DOI PMC
Lewis T.S., Shapiro P.S., Ahn N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998;74:49. PubMed
Gee L., Lim W., Ma W., Nandan D., Diaz-Mitoma F., Kozlowski M., Kumar A. Differential regulation of CD44 expression by Lipopolysaccharide (LPS) and TNF-α in human monocytic cells: Distinct involvement of c-Jun N-Terminal kinase in LPS-Induced CD44 expression. J. Immunol. 2002;169:5660–5672. doi: 10.4049/jimmunol.169.10.5660. PubMed DOI
Sohn E.J., Paape M.J., Connor E.E., Bannerman D.D., Fetterer R.H., Peters R.R. Bacterial lipopolysaccharide stimulates bovine neutrophil production of TNF-alpha, IL-1beta, IL-12 and IFN-gamma. Vet. Res. 2007;38:809–818. doi: 10.1051/vetres:2007033. PubMed DOI
Kratochvilova L., Kharkevich K., Slama P. TNF-alpha and IL-10 are produced by leukocytes during the experimental inflammatory response of bovine mammary gland induced by peptidoglycan. In: Cerkal R., Belcredi N.B., Prokesova L., editors. MENDELNET 2018, Proceedings of the 25th International PhD Students Conference MENDELNET 2018, Brno, Czech Republic, 7–8 November 2018. Mendel University in Brno; Brno, Czech Republic: 2018. pp. 376–379.
Salguero F.J., Sanchez-Cordon P.J., Nunez A., de Marco M.F., Gomez-Villamandos J.C. Proinflammatory cytokines induce lymphocyte apoptosis in acute african swine fever infection. J. Comp. Path. 2005;132:289–302. doi: 10.1016/j.jcpa.2004.11.004. PubMed DOI
Normanton M., Alvarenga H., Hamerschlak N., Ribeiro A., Kondo A., Rizzo L.V., Marti L.C. Interleukin 7 plays a role in T lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion. PLoS ONE. 2014;9:e106673. doi: 10.1371/journal.pone.0106673. PubMed DOI PMC