KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-25440S
Grantová Agentura České Republiky
20-25440S
Grantová Agentura České Republiky
20-25440S
Grantová Agentura České Republiky
RVO:60077344
Akademie Věd České Republiky
RVO:60077344
Akademie Věd České Republiky
RVO:60077344
Akademie Věd České Republiky
LM2018131
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018131
Ministerstvo Školství, Mládeže a Tělovýchovy
88881.144086/2017-01
Deutscher Akademischer Austauschdienst
MA 9363/3-1
Max-Planck-Gesellschaft
PubMed
38403686
DOI
10.1007/s10577-024-09747-x
PII: 10.1007/s10577-024-09747-x
Knihovny.cz E-zdroje
- Klíčová slova
- CENH3, Centromere, KNL1, NDC80, immunolabeling, kinetochore,
- MeSH
- centromera * MeSH
- chromatin MeSH
- kinetochory * MeSH
- rostlinné proteiny * genetika MeSH
- segregace chromozomů MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- rostlinné proteiny * MeSH
Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.
Department of Chromosome Biology Max Planck Institute for Plant Breeding Research Cologne Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany
Zobrazit více v PubMed
Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389 PubMed DOI PMC
Ávila Robledillo L, Neumann P, Koblížková A et al (2020) Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol 37:2341–2356. https://doi.org/10.1093/molbev/msaa090 PubMed DOI PMC
Báez M, Vaio M, Dreissig S et al (2019) Together but different: the subgenomes of the bimodal Eleutherine karyotypes are differentially organized. Front Plant Sci 10:1170. https://doi.org/10.3389/fpls.2019.01170 PubMed DOI PMC
Brown RC, Lemmon BE (1995) Methods in plant immunolight microscopy. In: Galbraith DW, Bohnert HJ, Bourque DP (eds). Methods in cell biology. Academic Press, New York, pp 85–107
Buus S, Rockberg J, Forsström B et al (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11:1790–1800. https://doi.org/10.1074/mcp.M112.020800 PubMed DOI PMC
Cabral G, Marques A, Schubert V et al (2014) Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 5:1–11. https://doi.org/10.1038/ncomms6070 DOI
Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004 PubMed DOI PMC
Dawe RK, Reed LM, Yu H-G et al (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238. https://doi.org/10.1105/tpc.11.7.1227 PubMed DOI PMC
Demidov D, Schubert V, Kumke K et al (2014) Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet Genome Res 143:150–156. https://doi.org/10.1159/000360018 PubMed DOI
Dong Q, Han F (2012) Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J 71:800–809. https://doi.org/10.1111/j.1365-313X.2012.05029.x PubMed DOI
Du Y, Dawe RK (2007) Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15:767–775. https://doi.org/10.1007/s10577-007-1160-z PubMed DOI
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340 PubMed DOI PMC
Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 12:543–548. https://doi.org/10.1093/bioinformatics/12.6.543 DOI
Hoopen R ten, Manteuffel R, Doležel J et al (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482–489. https://doi.org/10.1007/s004120000109 PubMed DOI
Hoshi Y, Kondo K (1998) A chromosome phylogeny of the Droseraceae by Using CMA-DAPI fluorescent banding. Cytologia 63:329–339. https://doi.org/10.1508/cytologia.63.329 DOI
Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560. https://doi.org/10.1016/j.pbi.2003.09.007 PubMed DOI
Jankowska M, Fuchs J, Klocke E et al (2015) Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124:519–528. https://doi.org/10.1007/s00412-015-0524-y PubMed DOI
Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575. https://doi.org/10.1016/j.tplants.2003.10.011 PubMed DOI
Kolodin P, Cempírková H, Bureš P et al (2018) Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst Evol 304:1289–1296. https://doi.org/10.1007/s00606-018-1546-8 DOI
Kuo Y-T, Câmara AS, Schubert V et al (2023) Holocentromeres can consist of merely a few megabase-sized satellite arrays. Nat Commun 14:3502. https://doi.org/10.1038/s41467-023-38922-7 PubMed DOI PMC
Macas J, Ávila Robledillo L, Kreplak J et al (2023) Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet 19:e1010633. https://doi.org/10.1371/journal.pgen.1010633 PubMed DOI PMC
Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298. https://doi.org/10.1093/genetics/157.3.1293 PubMed DOI PMC
Marques A, Ribeiro T, Neumann P, et al (2015) Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci USA 112:13633–13638. https://doi.org/10.1073/pnas.1512255112
Marques A, Schubert V, Houben A, Pedrosa-Harand A (2016) Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics 204:555–568. https://doi.org/10.1534/genetics.116.191213 PubMed DOI PMC
Metz B, Kersten GFA, Hoogerhout P et al (2004) Identification of formaldehyde-induced modifications in proteins. J Biol Chem 279:6235–6243. https://doi.org/10.1074/jbc.M310752200 PubMed DOI
Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203. https://doi.org/10.1007/s10577-005-0847-2 PubMed DOI
Neumann P, Navrátilová A, Schroeder-Reiter E et al (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777. https://doi.org/10.1371/journal.pgen.1002777 PubMed DOI PMC
Neumann P, Oliveira L, Jang T-S, et al (2023) Disruption of the standard kinetochore in holocentric Cuscuta species. Proc Natl Acad Sci USA 120:e2300877120. https://doi.org/10.1073/pnas.2300877120
Neumann P, Požárková D, Vrána J et al (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res 10:63–71. https://doi.org/10.1023/A:1014274328269 PubMed DOI
Neumann P, Schubert V, Fuková I et al (2016) Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front Plant Sci 7:234. https://doi.org/10.3389/fpls.2016.00234 PubMed DOI PMC
Oliveira LC, Torres GA (2018) Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 45:1491–1497. https://doi.org/10.1007/s11033-018-4284-7 PubMed DOI
Schalch TST, Steiner FA (2017) Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 126:443–455. https://doi.org/10.1007/s00412-016-0620-7 PubMed DOI
Schubert V, Neumann P, Marques A, et al (2020) Super-resolution microscopy reveals diversity of plant centromere architecture. Int J Mol Sci 21:3488–3472. https://doi.org/10.3390/ijms21103488
Su H, Wang YL Chunhui, Liu Y, et al (2021) Knl1 participates in spindle assembly checkpoint signaling in maize. Proc Natl Acad Sci USA 118:e2022357118. https://doi.org/10.1073/pnas.2022357118
Talbert PB, Masuelli R, Tyagi AP et al (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066. https://doi.org/10.1105/tpc.010425 PubMed DOI PMC
Wanner G, Schroeder-Reiter E, Ma W et al (2015) The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma 124:503–517. https://doi.org/10.1007/s00412-015-0521-1 PubMed DOI
Weisshart K, Fuchs J, Schubert V (2016) Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules in flow-sorted Arabidopsis nuclei. Bio-protocol 6(3):e1725. http://www.bio-protocol.org/e1725