Repeat-based holocentromeres of the woodrush Luzula sylvatica reveal insights into the evolutionary transition to holocentricity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
101114879
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
MA 9363/3-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
39500889
PubMed Central
PMC11538461
DOI
10.1038/s41467-024-53944-5
PII: 10.1038/s41467-024-53944-5
Knihovny.cz E-zdroje
- MeSH
- centromera * genetika MeSH
- chromozomy rostlin * genetika MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA * genetika MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA * MeSH
In most studied eukaryotes, chromosomes are monocentric, with centromere activity confined to a single region. However, the rush family (Juncaceae) includes species with both monocentric (Juncus) and holocentric (Luzula) chromosomes, where centromere activity is distributed along the entire chromosome length. Here, we combine chromosome-scale genome assembly, epigenetic analysis, immuno-FISH and super-resolution microscopy to study the transition to holocentricity in Luzula sylvatica. We report repeat-based holocentromeres with an irregular distribution of features along the chromosomes. Luzula sylvatica holocentromeres are predominantly associated with two satellite DNA repeats (Lusy1 and Lusy2), while CENH3 also binds satellite-free gene-poor regions. Comparative repeat analysis suggests that Lusy1 plays a crucial role in centromere function across most Luzula species. Furthermore, synteny analysis between L. sylvatica (n = 6) and Juncus effusus (n = 21) suggests that holocentric chromosomes in Luzula could have arisen from chromosome fusions of ancestral monocentric chromosomes, accompanied by the expansion of CENH3-associated satellite repeats.
Cluster of Excellence on Plant Sciences Heinrich Heine University Düsseldorf Germany
Department of Chromosome Biology Max Planck Institute for Plant Breeding Research Cologne Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben 06466 Seeland Germany
Max Planck Genome Centre Max Planck Institute for Plant Breeding Research Cologne Germany
Zobrazit více v PubMed
Talbert, P. B. & Henikoff, S. What makes a centromere? Exp. Cell Res.389, 111895 (2020). PubMed
Schubert, V. et al. Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. IJMS21, 3488 (2020). PubMed PMC
Heckmann, S. et al. The holocentric species Luzula elegans shows interplay between centromere and large‐scale genome organization. Plant J.73, 555–565 (2013). PubMed
Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell185, 3153–3168.e18 (2022). PubMed
Escudero, M., Marques, A., Lucek, K. & Hipp, A. L. Genomic hotspots of chromosome rearrangements explain conserved synteny despite high rates of chromosome evolution in a holocentric lineage. Mol. Ecol.10.1111/mec.17086 (2023). PubMed
Mata-Sucre, Y. et al. Oligo-barcode illuminates holocentric karyotype evolution in Rhynchospora (Cyperaceae). Front. Plant Sci.15, 1330927 (2024). PubMed PMC
Escudero, M., Márquez-Corro, J. I. & Hipp, A. L. The Phylogenetic Origins and Evolutionary History of Holocentric Chromosomes. Syst. Bot.41, 580–585 (2016).
Senaratne, A. P., Cortes-Silva, N. & Drinnenberg, I. A. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin. Cell Dev. Biol.127, 90–99 (2022). PubMed
Drinnenberg, I. A., deYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife3, e03676 (2014). PubMed PMC
Neumann, P. et al. Disruption of the standard kinetochore in holocentric Cuscuta species. Proc. Natl Acad. Sci. USA.120, e2300877120 (2023). PubMed PMC
Kuo, Y.-T., Schubert, V., Marques, A., Schubert, I. & Houben, A. Centromere diversity: How different repeat-based holocentromeres may have evolved. BioEssays46, e202400013 (2024). PubMed
Plohl, M., Meštrović, N. & Mravinac, B. Centromere identity from the DNA point of view. Chromosoma123, 313–325 (2014). PubMed PMC
Šatović-Vukšić, E. & Plohl, M. Satellite DNAs—From Localized to Highly Dispersed Genome Components. Genes14, 742 (2023). PubMed PMC
Hobza, R. et al. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma115, 376–382 (2006). PubMed
Kasinathan, S. & Henikoff, S. Non-B-Form DNA Is Enriched at Centromeres. Mol. Biol. Evol.35, 949–962 (2018). PubMed PMC
Marques, A. et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl Acad. Sci. USA.112, 13633–13638 (2015). PubMed PMC
Kuo, Y.-T. et al. Holocentromeres can consist of merely a few megabase-sized satellite arrays. Nat. Commun.14, 3502 (2023). PubMed PMC
Ma, B. et al. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Horticult. Res.10, uhad111 (2023). PubMed PMC
Despot-Slade, E. et al. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol. Biol. Evol.38, 1943–1965 (2021). PubMed PMC
POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ (2024).
Guerra, M., Ribeiro, T. & Felix, L. P. Monocentric chromosomes in Juncus ( Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc.191, 475–483 (2019).
Mata-Sucre, Y. et al. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. ( Juncaceae). Mol. Phylogenet. cs Evol.189, 107930 (2023). PubMed
Dias, Y. et al. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus ( Juncaceae). Plant J. tpj.16712 10.1111/tpj.16712 (2024). PubMed
Nagaki, K., Kashihara, K. & Murata, M. Visualization of Diffuse Centromeres with Centromere-Specific Histone H3 in the Holocentric Plant Luzula nivea. Plant Cell17, 1886–1893 (2005). PubMed PMC
Heckmann, S. et al. Holocentric Chromosomes of Luzula elegans Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region. Cytogenet Genome Res134, 220–228 (2011). PubMed
Bozek, M., Leitch, A. R., Leitch, I. J., Záveská Drábková, L. & Kuta, E. Chromosome and genome size variation in Luzula ( Juncaceae), a genus with holocentric chromosomes: Chromosome and C-Value Evolution in L uzula. Bot. J. Linn. Soc.170, 529–541 (2012).
Haizel, T., Lim, Y. K., Leitch, A. R. & Moore, G. Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res109, 134–143 (2005). PubMed
Goodwin, Z. A. et al. The genome sequence of great wood-rush, Luzula sylvatica (Huds) Gaudin. Wellcome Open Res9, 124 (2024). PubMed PMC
Oliveira, L. et al. KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants. Chromosome Res32, 3 (2024). PubMed
Wang, J. et al. A high-quality chromosome-scale assembly of the centipedegrass [Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit. Hortic. Res8, 201 (2021). PubMed PMC
Drábková, L. Z. A Survey of Karyological Phenomena in the Juncaceae with Emphasis on Chromosome Number Variation and Evolution. Bot. Rev.79, 401–446 (2013).
Lucek, K., Augustijnen, H. & Escudero, M. A holocentric twist to chromosomal speciation? Trends Ecol. Evol.37, 655–662 (2022). PubMed
Cortes-Silva, N. et al. CenH3-Independent Kinetochore Assembly in Lepidoptera Requires CCAN, Including CENP-T. Curr. Biol.30, 561–572.e10 (2020). PubMed
Jankowska, M. et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma124, 519–528 (2015). PubMed
Castellani, M. et al. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. Nat. Plants10, 423–438 (2024). PubMed PMC
Souza, T. B. D. et al. Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae). Genome gen-2024-0089 10.1139/gen-2024-0089 (2024). PubMed
Liu, H. et al. The genome of Eleocharis vivipara elucidates the genetics of C 3 –C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JIPB jipb.13765 10.1111/jipb.13765 (2024). PubMed
Ribeiro, T. et al. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma126, 325–335 (2016). PubMed
Costa, L., Marques, A., Buddenhagen, C. E., Pedrosa-Harand, A. & Souza, G. Investigating the diversification of holocentromeric satellite DNA Tyba in Rhynchospora (Cyperaceae). Ann. Bot.131, 813–825 (2023). PubMed PMC
Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature618, 557–565 (2023). PubMed
Hiatt, E. N., Kentner, E. K. & Dawe, R. K. Independently Regulated Neocentromere Activity of Two Classes of Tandem Repeat Arrays. Plant Cell14, 407–420 (2002). PubMed PMC
Piras, F. M. et al. Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus. PLoS Genet6, e1000845 (2010). PubMed PMC
Cappelletti, E. et al. Robertsonian Fusion and Centromere Repositioning Contributed to the Formation of Satellite-free Centromeres During the Evolution of Zebras. Mol. Biol. Evol.39, msac162 (2022). PubMed PMC
Ning, Y. et al. The chromosome-scale genome of Kobresia myosuroides sheds light on karyotype evolution and recent diversification of a dominant herb group on the Qinghai-Tibet Plateau. DNA Res.30, dsac049 (2023). PubMed PMC
Wright, C. J., Stevens, L., Mackintosh, A., Lawniczak, M. & Blaxter, M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat. Ecol. Evol.10.1038/s41559-024-02329-4 (2024). PubMed PMC
Augustijnen, H. et al. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. Sci. Adv.10, eadl0989 (2024). PubMed PMC
Elliott, T. L. & Davies, T. J. Phylogenetic attributes, conservation status and geographical origin of species gained and lost over 50 years in a UNESCO Biosphere Reserve. Biodivers. Conserv28, 711–728 (2019).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods18, 170–175 (2021). PubMed PMC
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation Completeness. in Gene Prediction (ed. Kollmar, M.) 1962 227–245 (Springer New York, New York, NY, 2019). PubMed
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013). PubMed PMC
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC
Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput Biol.15, e1007273 (2019). PubMed PMC
Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst.3, 99–101 (2016). PubMed PMC
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95 (2017). PubMed PMC
Sun, H., Ding, J., Piednoël, M. & Schneeberger, K. findGSE: estimating genome size variation within human and Arabidopsis using k -mer frequencies. Bioinformatics34, 550–557 (2018). PubMed
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k -mers. Bioinformatics27, 764–770 (2011). PubMed PMC
Ma, W. et al. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res24, 393–405 (2016). PubMed
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j.17, 10 (2011).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res44, W160–W165 (2016). PubMed PMC
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics37, 422–423 (2021). PubMed PMC
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008). PubMed PMC
Stovner, E. B. & Sætrom, P. epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics35, 4392–4393 (2019). PubMed
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics27, 1571–1572 (2011). PubMed PMC
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc.15, 3745–3776 (2020). PubMed
Novák, P., Hoštáková, N., Neumann, P. & Macas, J. DANTE and DANTE_LTR: lineage-centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genom. Bioinforma.6, lqae113 (2024). PubMed PMC
Neumann, P. et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob. DNA2, 4 (2011). PubMed PMC
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA10, 1 (2019). PubMed PMC
Novák, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res.45, e111 (2017). PubMed PMC
Sonnhammer, E. L. L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene167, GC1–GC10 (1995). PubMed
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics28, 1647–1649 (2012). PubMed PMC
Yu, Y., Ouyang, Y. & Yao, W. shinyCircos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics34, 1229–1231 (2018). PubMed
Sweeten, A. P., Schatz, M. C. & Phillippy, A. M. ModDotPlot—rapid and interactive visualization of tandem repeats. Bioinformatics40, btae493 (2024). PubMed PMC
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). PubMed PMC
Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng.9, 90–95 (2007).
McKinney, W. pandas: a foundational Python library for data analysis and statistics. Python high. Perform. Sci. Comput.14, 1–9 (2011).
Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics27, 3423–3424 (2011). PubMed PMC
Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). PubMed PMC
Waskom, M. seaborn: statistical data visualization. JOSS6, 3021 (2021).
Lyons, E., Pedersen, B., Kane, J. & Freeling, M. The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids. Trop. Plant Biol.1, 181–190 (2008).
Soderlund, C., Bomhoff, M. & Nelson, W. M. SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res.39, e68 (2011). PubMed PMC
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife11, e78526 (2022). PubMed PMC
Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci.6, e251 (2020). PubMed PMC
Kanduri, C., Bock, C., Gundersen, S., Hovig, E. & Sandve, G. K. Colocalization analyses of genomic elements: approaches, recommendations and challenges. Bioinformatics35, 1615–1624 (2019). PubMed PMC
Weisshart, K., Fuchs, J. & Schubert, V. Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to Analyze the Abundance and Distribution of RNA Polymerase II Molecules on Flow-sorted Arabidopsis Nuclei. BIO-PROTOCOL6, (2016).
Krátká, M. Repeat-based-holocentromeres-of-Luzula-sylvatica. Zenodo10.5281/ZENODO.13945236 (2024). PubMed PMC