Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture

. 2020 May 15 ; 21 (10) : . [epub] 20200515

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32429054

Grantová podpora
Schu 762/11-1; HO 1779/32-1 Deutsche Forschungsgemeinschaft
57517412; 88881.144086/2017-01 Deutscher Akademischer Austauschdienst

Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.

Zobrazit více v PubMed

Musacchio A., Desai A. A molecular view of kinetochore assembly and function. Biology (Basel) 2017;6:5. doi: 10.3390/biology6010005. PubMed DOI PMC

Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI

Cleveland D.W., Mao Y., Sullivan K.F. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell. 2003;112:407–421. doi: 10.1016/S0092-8674(03)00115-6. PubMed DOI

Plohl M., Meštrović N., Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–325. doi: 10.1007/s00412-014-0462-0. PubMed DOI PMC

Hoang P.T.N., Schubert V., Meister A., Fuchs J., Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 2019;9:3234. doi: 10.1038/s41598-019-39332-w. PubMed DOI PMC

Tran T.D., Cao H.X., Jovtchev G., Novák P., Vu G.T., Macas J., Schubert I., Fuchs J. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Front. Plant Sci. 2015;6:613. doi: 10.3389/fpls.2015.00613. PubMed DOI PMC

Vu G.T.H., Schmutzer T., Bull F., Cao H.X., Fuchs J., Tran D.T., Jovtchev G., Pistrick K., Stein N., Pecinka A., et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome. 2015;8:1–14. doi: 10.3835/plantgenome2015.04.0021. PubMed DOI

Fonsêca A., Ferreira J., dos Santos T.R., Mosiolek M., Bellucci E., Kami J., Gepts P., Geffroy V., Schweizer D., dos Santos K.G., et al. Cytogenetic map of common bean (Phaseolus vulgaris L.) Chromosome Res. 2010;18:487–502. doi: 10.1007/s10577-010-9129-8. PubMed DOI PMC

Da Costa Silva S., Marques A., dos Santos Soares Filho W., Mirkov T.E., Andrea Pedrosa-Harand A., Guerra M. The cytogenetic map of the Poncirus trifoliata (L.) Raf.—a nomenclature system for chromosomes of all citric species. Trop. Plant Biol. 2011;4:99–105. doi: 10.1007/s12042-011-9072-7. DOI

Heckmann S., Houben A. Holokinetic centromeres. In: Jiang J., Birchler J.A., editors. Plant Centromere Biology. Volume 1. Wiley-Blackwell; Ames, IA, USA: 2013. pp. 83–94.

Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC

Neumann P., Pavlíková Z., Koblížková A., Fuková I., Jedličková V., Novák P., Macas J. Centromeres off the hook: Massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol. Biol. Evol. 2015;32:1862–1879. doi: 10.1093/molbev/msv070. PubMed DOI PMC

Neumann P., Schubert V., Fuková I., Manning J.E., Houben A., Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front. Plant Sci. 2016;7:234. doi: 10.3389/fpls.2016.00234. PubMed DOI PMC

Huang Y.C., Lee C.C., Kao C.Y., Chang N.C., Lin C.C., Shoemaker D., Wang J. Evolution of long centromeres in fire ants. BMC Evol. Biol. 2016;16:189. doi: 10.1186/s12862-016-0760-7. PubMed DOI PMC

Brinkley B.R., Valdivia M.M., Tousson A., Brenner S.L. Compound kinetochores of the Indian muntjac. Evolution by linear fusion of unit kinetochores. Chromosoma. 1984;91:1–11. doi: 10.1007/BF00286479. PubMed DOI

Metcalfe C.J., Bulazel K.V., Ferreri G.C., Schroeder-Reiter E., Wanner G., Rens W., Obergfell C., Eldridge M.D., O’Neill R.J. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007;177:2507–2517. doi: 10.1534/genetics.107.082313. PubMed DOI PMC

Paweletz N., Vig B.K., Finze E.M. Evolution of compound centromeres. A new phenomenon. Cancer Genet. Cytogenet. 1989;42:75–86. doi: 10.1016/0165-4608(89)90010-1. PubMed DOI

Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980;287:504–509. doi: 10.1038/287504a0. PubMed DOI

Earnshaw W.C., Allshire R.C., Black B.E., Bloom K., Brinkley B.R., Brown W., Cheeseman I.M., Choo K.H., Copenhaver G.P., Deluca J.G., et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res. 2013;21:101–106. doi: 10.1007/s10577-013-9347-y. PubMed DOI PMC

Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. doi: 10.7554/eLife.03676. PubMed DOI PMC

Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC

Akiyoshi B. Evolution: A mosaic-type centromere in an early-diverging fungus. Curr. Biol. 2019;29:R1184–R1186. doi: 10.1016/j.cub.2019.09.042. PubMed DOI

Navarro-Mendoza M.I., Pérez-Arques C., Panchal S., Nicolás F.E., Mondo S.J., Ganguly P., Pangilinan J., Grigoriev I.V., Heitman J., Sanyal K., et al. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29:3791–3802. doi: 10.1016/j.cub.2019.09.024. PubMed DOI PMC

Van Hooff J.J., Tromer E., van Wijk L.M., Snel B., Kops G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18:1559–1571. doi: 10.15252/embr.201744102. PubMed DOI PMC

Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010;190:165–175. doi: 10.1083/jcb.201002018. PubMed DOI PMC

Agrawal U., Reilly D.T., Schroeder C.M. Zooming in on biological processes with fluorescence nanoscopy. Curr. Opin. Biotechnol. 2013;24:646–653. doi: 10.1016/j.copbio.2013.02.016. PubMed DOI

Allen J.R., Ross S.T., Davidson M.W. Structured illumination microscopy for superresolution. ChemPhysChem. 2014;15:566–576. doi: 10.1002/cphc.201301086. PubMed DOI

Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI

Nienhaus K., Nienhaus G.U. Where do we stand with super-resolution optical microscopy? J. Mol. Biol. 2016;428:308–322. doi: 10.1016/j.jmb.2015.12.020. PubMed DOI

Baroux C., Schubert V. Technical Review: Microscopy and image processing tools to analyse plant chromatin—Practical considerations. In: Bemer M., Baroux C., editors. Plant Chromatin Dynamics: Methods and Protocols. Volume 1675. Humana Press; New York, NY, USA: 2018. pp. 537–589. PubMed

Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21:72–84. doi: 10.1038/s41556-018-0251-8. PubMed DOI

Rouquette J., Cremer C., Cremer T., Fakan S. Functional nuclear architecture studied by microscopy: Present and future. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 282. Elsevier Inc.; Amsterdam, The Netherlands: 2010. pp. 1–90. PubMed

Han R., Li Z., Fan Y., Jiang Y. Recent advances in super-resolution fluorescence imaging and its applications in biology. J. Genet. Genomics. 2013;40:583–595. doi: 10.1016/j.jgg.2013.11.003. PubMed DOI

Fornasiero E.F., Opazo F. Super-resolution imaging for cell biologists: Concepts, applications, current challenges and developments. Bioessays. 2015;37:436–451. doi: 10.1002/bies.201400170. PubMed DOI

Kraus F., Miron E., Demmerle J., Chitiashvili T., Budco A., Alle Q., Matsuda A., Leonhardt H., Schermelleh L., Markaki Y. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 2017;12:1011–1028. doi: 10.1038/nprot.2017.020. PubMed DOI

Schubert V. Super-resolution microscopy – applications in plant cell research. Front. Plant Sci. 2017;8:531. doi: 10.3389/fpls.2017.00531. PubMed DOI PMC

Demidov D., Schubert V., Kumke K., Weiss O., Karimi-Ashtiyani R., Buttlar J., Heckmann S., Wanner G., Dong Q., Han F., et al. Anti-phosphorylated histone H2AThr120: A universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. 2014;143:150–156. doi: 10.1159/000360018. PubMed DOI

Houben A., Wako T., Furushima-Shimogawara R., Presting G., Künzel G., Schubert I., Fukui K. The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 1999;18:675–679. doi: 10.1046/j.1365-313x.1999.00496.x. PubMed DOI

Gernand D., Demidov D., Houben A. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet. Genome Res. 2003;101:172–176. doi: 10.1159/000074175. PubMed DOI

Weisshart K., Fuchs J., Schubert V. Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol. 2016;6:e1725. doi: 10.21769/BioProtoc.1725. DOI

Wanner G., Schroeder-Reiter E., Ma W., Houben A., Schubert V. The ultrastructure of mono- and holocentric plant centromeres: An immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma. 2015;124:503–517. doi: 10.1007/s00412-015-0521-1. PubMed DOI

Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA. 2007;104:14706–14711. doi: 10.1073/pnas.0706985104. PubMed DOI PMC

Pluta A.F., Mackay A.M., Ainsztein A.M., Goldberg I.G., Earnshaw W.C. The centromere: Hub of chromosomal activities. Science. 1995;270:1591–1594. doi: 10.1126/science.270.5242.1591. PubMed DOI

Ishii T., Karimi-Ashtiyani R., Banaei-Moghaddam A.M., Schubert V., Fuchs J., Houben A. The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosome Res. 2015;23:277–284. doi: 10.1007/s10577-015-9466-8. PubMed DOI

Banaei-Moghaddam A.M., Schubert V., Kumke K., Weibeta O., Klemme S., Nagaki K., Macas J., González-Sánchez M., Heredia V., Gómez-Revilla D., et al. Nondisjunction in favor of a chromosome: The mechanism of rye B chromosome drive during pollen mitosis. Plant Cell. 2012;24:4124–4134. doi: 10.1105/tpc.112.105270. PubMed DOI PMC

Oliveira L., Neumann P., Jang T.-S., Klemme S., Schubert V., Koblížková A., Houben A., Macas J. Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Front. Plant Sci. 2020;10:1799. doi: 10.3389/fpls.2019.01799. PubMed DOI PMC

Marques A., Schubert V., Houben A., Pedrosa-Harand A. Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics. 2016;204:555–568. doi: 10.1534/genetics.116.191213. PubMed DOI PMC

Heckmann S., Schroeder-Reiter E., Kumke K., Ma L., Nagaki K., Murata M., Wanner G., Houben A. Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet. Genome Res. 2011;134:220–228. doi: 10.1159/000327713. PubMed DOI

Heckmann S., Jankowska M., Schubert V., Kumke K., Ma W., Houben A. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat. Commun. 2014;5:4979. doi: 10.1038/ncomms5979. PubMed DOI PMC

Heckmann S., Schubert V., Houben A. Holocentric plant meiosis: First sisters, then homologues. Cell Cycle. 2014;13:3623–3624. doi: 10.4161/15384101.2014.986628. PubMed DOI PMC

Marques A., Ribeiro T., Neumann P., Macas J., Novák P., Schubert V., Pellino M., Fuchs J., Ma W., Kuhlmann M., et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. USA. 2015;112:13633–13638. doi: 10.1073/pnas.1512255112. PubMed DOI PMC

Lawrimore J., Bloom K. The regulation of chromosome segregation via centromere loops. Crit. Rev. Biochem. Mol. Biol. 2019;54:352–370. doi: 10.1080/10409238.2019.1670130. PubMed DOI PMC

Nagaki K., Kashihara K., Murata M. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell. 2005;17:1886–1893. doi: 10.1105/tpc.105.032961. PubMed DOI PMC

Ribeiro T., Buddenhagen C.E., Thomas W.W., Souza G., Pedrosa-Harand A. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae) Protoplasma. 2018;255:263–272. doi: 10.1007/s00709-017-1154-4. PubMed DOI

Cabral G., Marques A., Schubert V., Pedrosa-Harand A., Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat. Commun. 2014;5:5070. doi: 10.1038/ncomms6070. PubMed DOI PMC

Guerra M., Cabral G., Cuacos M., González-García M., González-Sánchez M., Vega J., Puertas M.J. Neocentrics and holokinetics (holocentrics): Chromosomes out of the centromeric rules. Cytogenet. Genome Res. 2010;129:82–96. doi: 10.1159/000314289. PubMed DOI

Cuacos M., Franklin F.C.H., Heckmann S. Atypical centromeres in plants-what they can tell us. Front. Plant Sci. 2015;6:913. doi: 10.3389/fpls.2015.00913. PubMed DOI PMC

Rocha D.M., Marques A., Andrade C.G., Guyot R., Chaluvadi S.R., Pedrosa-Harand A., Houben A., Bennetzen J.L., Vanzela A.L. Developmental programmed cell death during asymmetric microsporogenesis in holocentric species of Rhynchospora (Cyperaceae) J. Exp. Bot. 2016;67:5391–5401. doi: 10.1093/jxb/erw300. PubMed DOI PMC

Ma W., Schubert V., Martis M.M., Hause G., Liu Z., Shen Y., Conrad U., Shi W., Scholz U., Taudien S., et al. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res. 2016;24:393–405. doi: 10.1007/s10577-016-9529-5. PubMed DOI

Melters D.P., Paliulis L.V., Korf I.F., Chan S.W. Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI

Dernburg A.F. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. J. Cell Biol. 2001;153:F33–F38. doi: 10.1083/jcb.153.6.F33. PubMed DOI PMC

Guerra M., Ribeiro T., Felix L.P. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc. 2019;191:475–483. doi: 10.1093/botlinnean/boz065. DOI

Pimpinelli S., Goday C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 1989;5:310–315. doi: 10.1016/0168-9525(89)90114-5. PubMed DOI

Wrensch D.I., Kethley J.B., Noton R.A. Cytogenetics of holokinetic chromosomes and and inverted meiosis: Keys to evolutionary succes of mites, with generalization on eukaryotes. In: Houck M.A., editor. Mites: Ecological and Evolutionary Analyses of Life History Patterns. Springer; Boston, MA, USA: 1994. pp. 282–343.

Mola L.M., Papeschi A.G. Holokinetic chromosomes at a glance. J. Basic Appl. Genet. 2006;17:17–33.

Lima de Faria A. Genetics, origin and evolution of kinetochores. Hereditas. 1949;35:422–444. doi: 10.1111/j.1601-5223.1949.tb02883.x. DOI

Câmara A. Posição actual do problemado centromero. Genética Ibérica. 1953;5:1–33.

Castro D. The structure of the centromere and its functioning. Genética Ibérica. 1950;2:201–209.

Moore G., Aragón-Alcaide L., Roberts M., Reader S., Miller T., Foote T. Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol. Biol. 1997;35:17–23. doi: 10.1023/A:1005849912205. PubMed DOI

Schrader F. The role of the kinetochore in the chromosomal evolution of the Heteroptera and Homoptera. Evolution. 1947;1:134–142. doi: 10.1111/j.1558-5646.1947.tb01332.x. DOI

Sybenga J. Specialization in the behavior of chromosomes on the meiotic spindle. Genetica. 1981;57:143–151. doi: 10.1007/BF00131240. DOI

Sybenga J. Cytogenetics in Plant Breeding. 1st ed. Springer; Berlin/Heidelberg, Germany: 1992. p. 469.

Vaarama A. Cytological observation on Pleurozium schreberi, with special reference to centromere evolution. Ann. Bot. Soc. Zool. Bot. Fenn. Vanamo. 1954;28:1–59.

Swanson C.P. Cytology and Cytogenetics. 1st ed. Prentice-Hall, Inc.; Englewood Cliffs, NJ, USA: 1957. p. 596.

Greilhuber J. Chromosomes of the monocotyledons (general aspects) In: Rudall P.J., Cribb P.J., Cutler D.F., Humphries C.J., editors. Monocotyledons: Systematics and Evolution. Volume 2. Royal Botanic Gardens; Kew, UK: 1995. pp. 379–414.

Villasante A., Abad J.P., Méndez-Lago M. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc. Natl. Acad. Sci. USA. 2007;104:10542–10547. doi: 10.1073/pnas.0703808104. PubMed DOI PMC

Villasante A., Méndez-Lago M., Abad J.P., Montejo de Garcíni E. The birth of the centromere. Cell Cycle. 2007;6:2872–2876. doi: 10.4161/cc.6.23.5047. PubMed DOI

Malik H.S., Henikoff S. Conflict begets complexity: The evolution of centromeres. Curr. Opin. Genet. Dev. 2002;12:711–718. doi: 10.1016/S0959-437X(02)00351-9. PubMed DOI

Zedek F., Bureš P. Holocentric chromosomes: From tolerance to fragmentation to colonization of the land. Ann. Bot. 2018;121:9–16. doi: 10.1093/aob/mcx118. PubMed DOI PMC

Král J., Forman M., Korinkova T., Lerma A.C.R., Haddad C.R., Musilova J., Rezac M., Herrera I.M.A., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC

Stimpson K.M., Matheny J.E., Sullivan B.A. Dicentric chromosomes: Unique models to study centromere function and inactivation. Chromosome Res. 2012;20:595–605. doi: 10.1007/s10577-012-9302-3. PubMed DOI PMC

Drinnenberg I.A., Akiyoshi B. Evolutionary lessons from species with unique kinetochores. Prog. Mol. Subcell. Biol. 2017;56:111–138. PubMed

Zedek F., Bureš P. Pest arthropods with holocentric chromosomes are more resistant to sterilizing ionizing radiation. Radiat. Res. 2019;191:255–261. doi: 10.1667/RR15208.1. PubMed DOI

Hughes-Schrader S., Ris H. The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J. Exp. Zool. 1941;87:429–456. doi: 10.1002/jez.1400870306. DOI

Schrader F. Notes an the mitotic behavior of long chromosomes. Cytologia. 1935;6:422–430. doi: 10.1508/cytologia.6.422. DOI

Jankowska M., Fuchs J., Klocke E., Fojtová M., Polanská P., Fajkus J., Schubert V., Houben A. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015;124:519–528. doi: 10.1007/s00412-015-0524-y. PubMed DOI

Bureš P., Zedek F., Marková M. Holocentric chromosomes. In: Greilhuber J., Dolezel J., Wendel J.F., editors. Plant Genome Diversity, Physical Structure, Behaviour and Evolution of Plant Genomes. Volume 2. Springer; Vienna, Austria: 2013. pp. 187–208.

Da Silva C.R.M., González-Elizondo M.S., Vanzela A.L.L. Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot. J. Linn. Soc. 2005;149:457–464. doi: 10.1111/j.1095-8339.2005.00449.x. DOI

Yano O., Hoshino A.T. Cytological studies of aneuploidy in Eleocharis kamtschatica (Cyperaceae) Cytologia. 2006;71:141–147. doi: 10.1508/cytologia.71.141. DOI

Da Silva C.R., González-Elizondo M.S., Laforga Vanzela A.L. Chromosome reduction in Eleocharis maculosa (Cyperaceae) Cytogenet. Genome Res. 2008;122:175–180. doi: 10.1159/000163096. PubMed DOI

Márquez-Corro J.I., Martín-Bravo S., Spalink D., Luceño M., Escudero M. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae) Mol. Phylogenet. Evol. 2019;135:203–209. doi: 10.1016/j.ympev.2019.03.006. PubMed DOI

Kolodin P., Cempírková H., Bureš P., Horová L., Veleba A., Francová J., Adamec L., Zedek F. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 2018;304:1289–1296. doi: 10.1007/s00606-018-1546-8. DOI

Sheikh S.A., Kondo K. Differential staining with orcein, Giemsa, CMA, and DAPI for comparative chromosome study of 12 species of Australian Drosera (Droseraceae) Am. J. Bot. 1995;82:1278–1286. doi: 10.1002/j.1537-2197.1995.tb12662.x. DOI

Sheikh S.A., Kondo K., Hoshi Y. Study of diffused centromeric nature of Drosera chromosomes. Cytologia. 1995;60:43–47. doi: 10.1508/cytologia.60.43. DOI

Veleba A., Šmarda P., Zedek F., Horová L., Šmerda J., Bureš P. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae) Ann. Bot. 2017;119:409–416. doi: 10.1093/aob/mcw229. PubMed DOI PMC

Tanaka N., Tanaka N. Chromosome Studies in Chionographis (Liliaceae) I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia. 1977;42:753–763. doi: 10.1508/cytologia.42.753. DOI

Tanaka N., Tanaka N. Chromosome studies in Chionographis (Liliaceae). II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytologia. 1979;44:935–949. doi: 10.1508/cytologia.44.935. DOI

Marques A., Pedrosa-Harand A. Holocentromere identity: From the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma. 2016;125:669–681. doi: 10.1007/s00412-016-0612-7. PubMed DOI

Marques A., Schubert V., Houben A., Pedrosa-Harand A. Loss of the line-like holocentromere structure during inverted meiosis in a holocentric plant. Cytogenet. Genome Res. 2016;148:128.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Repeat-based holocentromeres of the woodrush Luzula sylvatica reveal insights into the evolutionary transition to holocentricity

. 2024 Nov 05 ; 15 (1) : 9565. [epub] 20241105

Holocentromeres can consist of merely a few megabase-sized satellite arrays

. 2023 Jun 13 ; 14 (1) : 3502. [epub] 20230613

Disruption of the standard kinetochore in holocentric Cuscuta species

. 2023 May 23 ; 120 (21) : e2300877120. [epub] 20230516

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

. 2023 Feb ; 19 (2) : e1010633. [epub] 20230203

Imaging plant cells and organs with light-sheet and super-resolution microscopy

. 2022 Feb 04 ; 188 (2) : 683-702.

Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads

. 2021 ; 19 () : 2179-2189. [epub] 20210422

Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes

. 2021 Feb 14 ; 22 (4) : . [epub] 20210214

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace