Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Schu 762/11-1; HO 1779/32-1
Deutsche Forschungsgemeinschaft
57517412; 88881.144086/2017-01
Deutscher Akademischer Austauschdienst
PubMed
32429054
PubMed Central
PMC7278974
DOI
10.3390/ijms21103488
PII: ijms21103488
Knihovny.cz E-zdroje
- Klíčová slova
- CENH3, CENP-A, Cuscuta, Lathyrus, Luzula, Pisum, Rhynchospora, clustered centromere, holocentromere, microtubule, monocentromere, structured illumination microscopy,
- MeSH
- buněčný cyklus MeSH
- centromera metabolismus MeSH
- chromozomy rostlin metabolismus MeSH
- mikroskopie * MeSH
- molekulární evoluce MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
Biology Centre Czech Academy of Sciences 37005 České Budějovice Czech Republic
Department of Biological Sciences Chungnam National University Daejeon 34134 Korea
Department of Botany Federal University of Pernambuco Recife 50670 901 Pernambuco Brazil
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben 06466 Seeland Germany
Zobrazit více v PubMed
Musacchio A., Desai A. A molecular view of kinetochore assembly and function. Biology (Basel) 2017;6:5. doi: 10.3390/biology6010005. PubMed DOI PMC
Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Cleveland D.W., Mao Y., Sullivan K.F. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell. 2003;112:407–421. doi: 10.1016/S0092-8674(03)00115-6. PubMed DOI
Plohl M., Meštrović N., Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–325. doi: 10.1007/s00412-014-0462-0. PubMed DOI PMC
Hoang P.T.N., Schubert V., Meister A., Fuchs J., Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 2019;9:3234. doi: 10.1038/s41598-019-39332-w. PubMed DOI PMC
Tran T.D., Cao H.X., Jovtchev G., Novák P., Vu G.T., Macas J., Schubert I., Fuchs J. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Front. Plant Sci. 2015;6:613. doi: 10.3389/fpls.2015.00613. PubMed DOI PMC
Vu G.T.H., Schmutzer T., Bull F., Cao H.X., Fuchs J., Tran D.T., Jovtchev G., Pistrick K., Stein N., Pecinka A., et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome. 2015;8:1–14. doi: 10.3835/plantgenome2015.04.0021. PubMed DOI
Fonsêca A., Ferreira J., dos Santos T.R., Mosiolek M., Bellucci E., Kami J., Gepts P., Geffroy V., Schweizer D., dos Santos K.G., et al. Cytogenetic map of common bean (Phaseolus vulgaris L.) Chromosome Res. 2010;18:487–502. doi: 10.1007/s10577-010-9129-8. PubMed DOI PMC
Da Costa Silva S., Marques A., dos Santos Soares Filho W., Mirkov T.E., Andrea Pedrosa-Harand A., Guerra M. The cytogenetic map of the Poncirus trifoliata (L.) Raf.—a nomenclature system for chromosomes of all citric species. Trop. Plant Biol. 2011;4:99–105. doi: 10.1007/s12042-011-9072-7. DOI
Heckmann S., Houben A. Holokinetic centromeres. In: Jiang J., Birchler J.A., editors. Plant Centromere Biology. Volume 1. Wiley-Blackwell; Ames, IA, USA: 2013. pp. 83–94.
Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC
Neumann P., Pavlíková Z., Koblížková A., Fuková I., Jedličková V., Novák P., Macas J. Centromeres off the hook: Massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol. Biol. Evol. 2015;32:1862–1879. doi: 10.1093/molbev/msv070. PubMed DOI PMC
Neumann P., Schubert V., Fuková I., Manning J.E., Houben A., Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front. Plant Sci. 2016;7:234. doi: 10.3389/fpls.2016.00234. PubMed DOI PMC
Huang Y.C., Lee C.C., Kao C.Y., Chang N.C., Lin C.C., Shoemaker D., Wang J. Evolution of long centromeres in fire ants. BMC Evol. Biol. 2016;16:189. doi: 10.1186/s12862-016-0760-7. PubMed DOI PMC
Brinkley B.R., Valdivia M.M., Tousson A., Brenner S.L. Compound kinetochores of the Indian muntjac. Evolution by linear fusion of unit kinetochores. Chromosoma. 1984;91:1–11. doi: 10.1007/BF00286479. PubMed DOI
Metcalfe C.J., Bulazel K.V., Ferreri G.C., Schroeder-Reiter E., Wanner G., Rens W., Obergfell C., Eldridge M.D., O’Neill R.J. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007;177:2507–2517. doi: 10.1534/genetics.107.082313. PubMed DOI PMC
Paweletz N., Vig B.K., Finze E.M. Evolution of compound centromeres. A new phenomenon. Cancer Genet. Cytogenet. 1989;42:75–86. doi: 10.1016/0165-4608(89)90010-1. PubMed DOI
Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980;287:504–509. doi: 10.1038/287504a0. PubMed DOI
Earnshaw W.C., Allshire R.C., Black B.E., Bloom K., Brinkley B.R., Brown W., Cheeseman I.M., Choo K.H., Copenhaver G.P., Deluca J.G., et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res. 2013;21:101–106. doi: 10.1007/s10577-013-9347-y. PubMed DOI PMC
Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. doi: 10.7554/eLife.03676. PubMed DOI PMC
Akiyoshi B., Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC
Akiyoshi B. Evolution: A mosaic-type centromere in an early-diverging fungus. Curr. Biol. 2019;29:R1184–R1186. doi: 10.1016/j.cub.2019.09.042. PubMed DOI
Navarro-Mendoza M.I., Pérez-Arques C., Panchal S., Nicolás F.E., Mondo S.J., Ganguly P., Pangilinan J., Grigoriev I.V., Heitman J., Sanyal K., et al. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29:3791–3802. doi: 10.1016/j.cub.2019.09.024. PubMed DOI PMC
Van Hooff J.J., Tromer E., van Wijk L.M., Snel B., Kops G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18:1559–1571. doi: 10.15252/embr.201744102. PubMed DOI PMC
Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010;190:165–175. doi: 10.1083/jcb.201002018. PubMed DOI PMC
Agrawal U., Reilly D.T., Schroeder C.M. Zooming in on biological processes with fluorescence nanoscopy. Curr. Opin. Biotechnol. 2013;24:646–653. doi: 10.1016/j.copbio.2013.02.016. PubMed DOI
Allen J.R., Ross S.T., Davidson M.W. Structured illumination microscopy for superresolution. ChemPhysChem. 2014;15:566–576. doi: 10.1002/cphc.201301086. PubMed DOI
Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI
Nienhaus K., Nienhaus G.U. Where do we stand with super-resolution optical microscopy? J. Mol. Biol. 2016;428:308–322. doi: 10.1016/j.jmb.2015.12.020. PubMed DOI
Baroux C., Schubert V. Technical Review: Microscopy and image processing tools to analyse plant chromatin—Practical considerations. In: Bemer M., Baroux C., editors. Plant Chromatin Dynamics: Methods and Protocols. Volume 1675. Humana Press; New York, NY, USA: 2018. pp. 537–589. PubMed
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21:72–84. doi: 10.1038/s41556-018-0251-8. PubMed DOI
Rouquette J., Cremer C., Cremer T., Fakan S. Functional nuclear architecture studied by microscopy: Present and future. In: Jeon K.W., editor. International Review of Cell and Molecular Biology. Volume 282. Elsevier Inc.; Amsterdam, The Netherlands: 2010. pp. 1–90. PubMed
Han R., Li Z., Fan Y., Jiang Y. Recent advances in super-resolution fluorescence imaging and its applications in biology. J. Genet. Genomics. 2013;40:583–595. doi: 10.1016/j.jgg.2013.11.003. PubMed DOI
Fornasiero E.F., Opazo F. Super-resolution imaging for cell biologists: Concepts, applications, current challenges and developments. Bioessays. 2015;37:436–451. doi: 10.1002/bies.201400170. PubMed DOI
Kraus F., Miron E., Demmerle J., Chitiashvili T., Budco A., Alle Q., Matsuda A., Leonhardt H., Schermelleh L., Markaki Y. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 2017;12:1011–1028. doi: 10.1038/nprot.2017.020. PubMed DOI
Schubert V. Super-resolution microscopy – applications in plant cell research. Front. Plant Sci. 2017;8:531. doi: 10.3389/fpls.2017.00531. PubMed DOI PMC
Demidov D., Schubert V., Kumke K., Weiss O., Karimi-Ashtiyani R., Buttlar J., Heckmann S., Wanner G., Dong Q., Han F., et al. Anti-phosphorylated histone H2AThr120: A universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. 2014;143:150–156. doi: 10.1159/000360018. PubMed DOI
Houben A., Wako T., Furushima-Shimogawara R., Presting G., Künzel G., Schubert I., Fukui K. The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 1999;18:675–679. doi: 10.1046/j.1365-313x.1999.00496.x. PubMed DOI
Gernand D., Demidov D., Houben A. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet. Genome Res. 2003;101:172–176. doi: 10.1159/000074175. PubMed DOI
Weisshart K., Fuchs J., Schubert V. Structured Illumination Microscopy (SIM) and Photoactivated Localization Microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio-Protocol. 2016;6:e1725. doi: 10.21769/BioProtoc.1725. DOI
Wanner G., Schroeder-Reiter E., Ma W., Houben A., Schubert V. The ultrastructure of mono- and holocentric plant centromeres: An immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma. 2015;124:503–517. doi: 10.1007/s00412-015-0521-1. PubMed DOI
Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA. 2007;104:14706–14711. doi: 10.1073/pnas.0706985104. PubMed DOI PMC
Pluta A.F., Mackay A.M., Ainsztein A.M., Goldberg I.G., Earnshaw W.C. The centromere: Hub of chromosomal activities. Science. 1995;270:1591–1594. doi: 10.1126/science.270.5242.1591. PubMed DOI
Ishii T., Karimi-Ashtiyani R., Banaei-Moghaddam A.M., Schubert V., Fuchs J., Houben A. The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosome Res. 2015;23:277–284. doi: 10.1007/s10577-015-9466-8. PubMed DOI
Banaei-Moghaddam A.M., Schubert V., Kumke K., Weibeta O., Klemme S., Nagaki K., Macas J., González-Sánchez M., Heredia V., Gómez-Revilla D., et al. Nondisjunction in favor of a chromosome: The mechanism of rye B chromosome drive during pollen mitosis. Plant Cell. 2012;24:4124–4134. doi: 10.1105/tpc.112.105270. PubMed DOI PMC
Oliveira L., Neumann P., Jang T.-S., Klemme S., Schubert V., Koblížková A., Houben A., Macas J. Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Front. Plant Sci. 2020;10:1799. doi: 10.3389/fpls.2019.01799. PubMed DOI PMC
Marques A., Schubert V., Houben A., Pedrosa-Harand A. Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics. 2016;204:555–568. doi: 10.1534/genetics.116.191213. PubMed DOI PMC
Heckmann S., Schroeder-Reiter E., Kumke K., Ma L., Nagaki K., Murata M., Wanner G., Houben A. Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet. Genome Res. 2011;134:220–228. doi: 10.1159/000327713. PubMed DOI
Heckmann S., Jankowska M., Schubert V., Kumke K., Ma W., Houben A. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat. Commun. 2014;5:4979. doi: 10.1038/ncomms5979. PubMed DOI PMC
Heckmann S., Schubert V., Houben A. Holocentric plant meiosis: First sisters, then homologues. Cell Cycle. 2014;13:3623–3624. doi: 10.4161/15384101.2014.986628. PubMed DOI PMC
Marques A., Ribeiro T., Neumann P., Macas J., Novák P., Schubert V., Pellino M., Fuchs J., Ma W., Kuhlmann M., et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. USA. 2015;112:13633–13638. doi: 10.1073/pnas.1512255112. PubMed DOI PMC
Lawrimore J., Bloom K. The regulation of chromosome segregation via centromere loops. Crit. Rev. Biochem. Mol. Biol. 2019;54:352–370. doi: 10.1080/10409238.2019.1670130. PubMed DOI PMC
Nagaki K., Kashihara K., Murata M. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell. 2005;17:1886–1893. doi: 10.1105/tpc.105.032961. PubMed DOI PMC
Ribeiro T., Buddenhagen C.E., Thomas W.W., Souza G., Pedrosa-Harand A. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae) Protoplasma. 2018;255:263–272. doi: 10.1007/s00709-017-1154-4. PubMed DOI
Cabral G., Marques A., Schubert V., Pedrosa-Harand A., Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat. Commun. 2014;5:5070. doi: 10.1038/ncomms6070. PubMed DOI PMC
Guerra M., Cabral G., Cuacos M., González-García M., González-Sánchez M., Vega J., Puertas M.J. Neocentrics and holokinetics (holocentrics): Chromosomes out of the centromeric rules. Cytogenet. Genome Res. 2010;129:82–96. doi: 10.1159/000314289. PubMed DOI
Cuacos M., Franklin F.C.H., Heckmann S. Atypical centromeres in plants-what they can tell us. Front. Plant Sci. 2015;6:913. doi: 10.3389/fpls.2015.00913. PubMed DOI PMC
Rocha D.M., Marques A., Andrade C.G., Guyot R., Chaluvadi S.R., Pedrosa-Harand A., Houben A., Bennetzen J.L., Vanzela A.L. Developmental programmed cell death during asymmetric microsporogenesis in holocentric species of Rhynchospora (Cyperaceae) J. Exp. Bot. 2016;67:5391–5401. doi: 10.1093/jxb/erw300. PubMed DOI PMC
Ma W., Schubert V., Martis M.M., Hause G., Liu Z., Shen Y., Conrad U., Shi W., Scholz U., Taudien S., et al. The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Res. 2016;24:393–405. doi: 10.1007/s10577-016-9529-5. PubMed DOI
Melters D.P., Paliulis L.V., Korf I.F., Chan S.W. Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI
Dernburg A.F. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. J. Cell Biol. 2001;153:F33–F38. doi: 10.1083/jcb.153.6.F33. PubMed DOI PMC
Guerra M., Ribeiro T., Felix L.P. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc. 2019;191:475–483. doi: 10.1093/botlinnean/boz065. DOI
Pimpinelli S., Goday C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 1989;5:310–315. doi: 10.1016/0168-9525(89)90114-5. PubMed DOI
Wrensch D.I., Kethley J.B., Noton R.A. Cytogenetics of holokinetic chromosomes and and inverted meiosis: Keys to evolutionary succes of mites, with generalization on eukaryotes. In: Houck M.A., editor. Mites: Ecological and Evolutionary Analyses of Life History Patterns. Springer; Boston, MA, USA: 1994. pp. 282–343.
Mola L.M., Papeschi A.G. Holokinetic chromosomes at a glance. J. Basic Appl. Genet. 2006;17:17–33.
Lima de Faria A. Genetics, origin and evolution of kinetochores. Hereditas. 1949;35:422–444. doi: 10.1111/j.1601-5223.1949.tb02883.x. DOI
Câmara A. Posição actual do problemado centromero. Genética Ibérica. 1953;5:1–33.
Castro D. The structure of the centromere and its functioning. Genética Ibérica. 1950;2:201–209.
Moore G., Aragón-Alcaide L., Roberts M., Reader S., Miller T., Foote T. Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol. Biol. 1997;35:17–23. doi: 10.1023/A:1005849912205. PubMed DOI
Schrader F. The role of the kinetochore in the chromosomal evolution of the Heteroptera and Homoptera. Evolution. 1947;1:134–142. doi: 10.1111/j.1558-5646.1947.tb01332.x. DOI
Sybenga J. Specialization in the behavior of chromosomes on the meiotic spindle. Genetica. 1981;57:143–151. doi: 10.1007/BF00131240. DOI
Sybenga J. Cytogenetics in Plant Breeding. 1st ed. Springer; Berlin/Heidelberg, Germany: 1992. p. 469.
Vaarama A. Cytological observation on Pleurozium schreberi, with special reference to centromere evolution. Ann. Bot. Soc. Zool. Bot. Fenn. Vanamo. 1954;28:1–59.
Swanson C.P. Cytology and Cytogenetics. 1st ed. Prentice-Hall, Inc.; Englewood Cliffs, NJ, USA: 1957. p. 596.
Greilhuber J. Chromosomes of the monocotyledons (general aspects) In: Rudall P.J., Cribb P.J., Cutler D.F., Humphries C.J., editors. Monocotyledons: Systematics and Evolution. Volume 2. Royal Botanic Gardens; Kew, UK: 1995. pp. 379–414.
Villasante A., Abad J.P., Méndez-Lago M. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc. Natl. Acad. Sci. USA. 2007;104:10542–10547. doi: 10.1073/pnas.0703808104. PubMed DOI PMC
Villasante A., Méndez-Lago M., Abad J.P., Montejo de Garcíni E. The birth of the centromere. Cell Cycle. 2007;6:2872–2876. doi: 10.4161/cc.6.23.5047. PubMed DOI
Malik H.S., Henikoff S. Conflict begets complexity: The evolution of centromeres. Curr. Opin. Genet. Dev. 2002;12:711–718. doi: 10.1016/S0959-437X(02)00351-9. PubMed DOI
Zedek F., Bureš P. Holocentric chromosomes: From tolerance to fragmentation to colonization of the land. Ann. Bot. 2018;121:9–16. doi: 10.1093/aob/mcx118. PubMed DOI PMC
Král J., Forman M., Korinkova T., Lerma A.C.R., Haddad C.R., Musilova J., Rezac M., Herrera I.M.A., Thakur S., Dippenaar-Schoeman A.S., et al. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Sci. Rep. 2019;9:3001. doi: 10.1038/s41598-019-39034-3. PubMed DOI PMC
Stimpson K.M., Matheny J.E., Sullivan B.A. Dicentric chromosomes: Unique models to study centromere function and inactivation. Chromosome Res. 2012;20:595–605. doi: 10.1007/s10577-012-9302-3. PubMed DOI PMC
Drinnenberg I.A., Akiyoshi B. Evolutionary lessons from species with unique kinetochores. Prog. Mol. Subcell. Biol. 2017;56:111–138. PubMed
Zedek F., Bureš P. Pest arthropods with holocentric chromosomes are more resistant to sterilizing ionizing radiation. Radiat. Res. 2019;191:255–261. doi: 10.1667/RR15208.1. PubMed DOI
Hughes-Schrader S., Ris H. The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J. Exp. Zool. 1941;87:429–456. doi: 10.1002/jez.1400870306. DOI
Schrader F. Notes an the mitotic behavior of long chromosomes. Cytologia. 1935;6:422–430. doi: 10.1508/cytologia.6.422. DOI
Jankowska M., Fuchs J., Klocke E., Fojtová M., Polanská P., Fajkus J., Schubert V., Houben A. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015;124:519–528. doi: 10.1007/s00412-015-0524-y. PubMed DOI
Bureš P., Zedek F., Marková M. Holocentric chromosomes. In: Greilhuber J., Dolezel J., Wendel J.F., editors. Plant Genome Diversity, Physical Structure, Behaviour and Evolution of Plant Genomes. Volume 2. Springer; Vienna, Austria: 2013. pp. 187–208.
Da Silva C.R.M., González-Elizondo M.S., Vanzela A.L.L. Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot. J. Linn. Soc. 2005;149:457–464. doi: 10.1111/j.1095-8339.2005.00449.x. DOI
Yano O., Hoshino A.T. Cytological studies of aneuploidy in Eleocharis kamtschatica (Cyperaceae) Cytologia. 2006;71:141–147. doi: 10.1508/cytologia.71.141. DOI
Da Silva C.R., González-Elizondo M.S., Laforga Vanzela A.L. Chromosome reduction in Eleocharis maculosa (Cyperaceae) Cytogenet. Genome Res. 2008;122:175–180. doi: 10.1159/000163096. PubMed DOI
Márquez-Corro J.I., Martín-Bravo S., Spalink D., Luceño M., Escudero M. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae) Mol. Phylogenet. Evol. 2019;135:203–209. doi: 10.1016/j.ympev.2019.03.006. PubMed DOI
Kolodin P., Cempírková H., Bureš P., Horová L., Veleba A., Francová J., Adamec L., Zedek F. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 2018;304:1289–1296. doi: 10.1007/s00606-018-1546-8. DOI
Sheikh S.A., Kondo K. Differential staining with orcein, Giemsa, CMA, and DAPI for comparative chromosome study of 12 species of Australian Drosera (Droseraceae) Am. J. Bot. 1995;82:1278–1286. doi: 10.1002/j.1537-2197.1995.tb12662.x. DOI
Sheikh S.A., Kondo K., Hoshi Y. Study of diffused centromeric nature of Drosera chromosomes. Cytologia. 1995;60:43–47. doi: 10.1508/cytologia.60.43. DOI
Veleba A., Šmarda P., Zedek F., Horová L., Šmerda J., Bureš P. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae) Ann. Bot. 2017;119:409–416. doi: 10.1093/aob/mcw229. PubMed DOI PMC
Tanaka N., Tanaka N. Chromosome Studies in Chionographis (Liliaceae) I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia. 1977;42:753–763. doi: 10.1508/cytologia.42.753. DOI
Tanaka N., Tanaka N. Chromosome studies in Chionographis (Liliaceae). II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytologia. 1979;44:935–949. doi: 10.1508/cytologia.44.935. DOI
Marques A., Pedrosa-Harand A. Holocentromere identity: From the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma. 2016;125:669–681. doi: 10.1007/s00412-016-0612-7. PubMed DOI
Marques A., Schubert V., Houben A., Pedrosa-Harand A. Loss of the line-like holocentromere structure during inverted meiosis in a holocentric plant. Cytogenet. Genome Res. 2016;148:128.
Holocentromeres can consist of merely a few megabase-sized satellite arrays
Disruption of the standard kinetochore in holocentric Cuscuta species
Imaging plant cells and organs with light-sheet and super-resolution microscopy
Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes