Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences

. 2015 ; 6 () : 613. [epub] 20150820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26347752

The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea.

Zobrazit více v PubMed

Albert V. A., Jobson R. W., Michael T. P., Taylor D. J. (2010). The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. J. Exp. Bot. 61 5–9. 10.1093/jxb/erp349 PubMed DOI

Ali H. B., Lysak M. A., Schubert I. (2005). Chromosomal localization of rDNA in the Brassicaceae. Genome 48 341–346. 10.1139/g04-116 PubMed DOI

Bennett M. D., Leitch I. J., Price H. J., Johnston J. S. (2003). Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann. Bot. 91 547–557. 10.1093/aob/mcg057 PubMed DOI PMC

Cao H. X., Vu G. T. H., Wang W., Messing J., Schubert I. (2015a). Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol. 17(Suppl. 1), 120–124. 10.1111/plb.12194 PubMed DOI

Cao H. X., Schmutzer T., Scholz U., Pecinka A., Schubert I., Vu G. T. H. (2015b). Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front. Microbiol. 6:526 10.3389/fmicb.2015.00526 PubMed DOI PMC

Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry A 51 127–128. 10.1002/cyto.a.10013 PubMed DOI

El Baidouri M., Carpentier M. C., Cooke R., Gao D., Lasserre E., Llauro C., et al. (2014). Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 24 831–838. 10.1101/gr.164400.113 PubMed DOI PMC

Fleischmann A. (2012). Monograph of the Genus Genlisea. Dorset: Redfern Natural History Productions.

Fleischmann A., Michael T. P., Rivadavia F., Sousa A., Wang W., Temsch E. M., et al. (2014). Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114 1651–1663. 10.1093/aob/mcu189 PubMed DOI PMC

Fuchs J., Jovtchev G., Schubert I. (2008). The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res. 16 891–898. 10.1007/s10577-008-1252-4 PubMed DOI

Fuchs J., Schubert I. (2012). “Chromosomal distribution and functional interpretation of epigenetic histone marks in plants,” in Plant Cytogenetics, eds Bass H. W., Birchler J. A. (New York, NY: Springer; ), 231–253. 10.1007/978-0-387-70869-0_9 DOI

Garcia S., Galvez F., Gras A., Kovarik A., Garnatje T. (2014). Plant rDNA database: update and new features. Database (Oxford) 2014:bau063 10.1093/database/bau063 PubMed DOI PMC

Greilhuber J., Borsch T., Worberg A., Porembski S., Barthlott W. (2006). Smallest angiosperm genomes found in Lentibulariaceae, with chromosome of bacterial size. Plant Biol. 8 770–777. 10.1055/s-2006-924101 PubMed DOI

Houben A., Demidov D., Gernand D., Meister A., Leach C. R., Schubert I. (2003). Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J. 33 967–973. 10.1046/j.1365-313X.2003.01681.x PubMed DOI

Ibarra-Laclette E., Lyons E., Hernandez-Guzman G., Perez-Torres C. A., Carretero-Paulet L., Chang T. H., et al. (2013). Architecture and evolution of a minute plant genome. Nature 498 94–98. 10.1038/nature12132 PubMed DOI PMC

Jobson R. W., Albert V. A. (2002). Molecular rates parallel diversification contrasts between carnivorous plant sister lineages1. Cladistics 18 127–136. 10.1111/j.1096-0031.2002.tb00145.x PubMed DOI

Jovtchev G., Schubert V., Meister A., Barow M., Schubert I. (2006). Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet. Genome. Res. 114 77–82. 10.1159/000091932 PubMed DOI

Leushkin E., Sutormin R., Nabieva E., Penin A., Kondrashov A., Logacheva M. (2013). The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics 14:476 10.1186/1471-2164-14-476 PubMed DOI PMC

Lopez-Flores I., Garrido-Ramos M. A. (2012). The repetitive DNA content of eukaryotic genomes. Genome Dyn. 7 1–28. 10.1159/000337118. PubMed DOI

Lysak M. A., Berr A., Pecinka A., Schmidt R., McBreen K., Schubert I. (2006a). Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci. U.S.A. 103 5224–5229. 10.1073/pnas.0510791103 PubMed DOI PMC

Lysak M. A., Fransz P., Schubert I. (2006b). Cytogenetic analyses of Arabidopsis. Methods Mol. Biol. 323 173–186. 10.1385/1-59745-003-0 PubMed DOI

Mandakova T., Joly S., Krzywinski M., Mummenhoff K., Lysak M. A. (2010). Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22 2277–2290. 10.1105/tpc.110.074526 PubMed DOI PMC

Mueller K. F., Borsch T., Legendre L., Porembski S., Barthlott W. (2006). Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol. 8 748–757. 10.1055/s-2006-924706 PubMed DOI

Mueller K., Borsch T., Legendre L., Porembski S., Theisen I., Barthlott W. (2003). Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol. 6 477–490. 10.1055/s-2004-817909 PubMed DOI

Novak P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378 10.1186/1471-2105-11-378 PubMed DOI PMC

Schmidt-Lebuhn A. N., Fuchs J., Hertel D., Hirsch H., Toivonen J., Kessler M. (2010). An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. 12 917–926. 10.1111/j.1438-8677.2009.00297.x PubMed DOI

Schubert I., Lysak M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27 207–216. 10.1016/j.tig.2011.03.004 PubMed DOI

Shibata F., Sahara K., Naito Y., Yasukochi Y. (2009). Reprobing multicolor FISH preparations in lepidopteran chromosome. Zoolog. Sci. 26 187–190. 10.2108/zsj.26.187 PubMed DOI

Soppe W. J., Jasencakova Z., Houben A., Kakutani T., Meister A., Huang M. S., et al. (2002). DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21 6549–6559. 10.1093/emboj/cdf657 PubMed DOI PMC

Veleba A., Bures P., Adamec L., Smarda P., Lipnerova I., Horova L. (2014). Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytol. 203 22–28. 10.1111/nph.12790 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...