Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34070001
PubMed Central
PMC8157887
DOI
10.3390/ma14102636
PII: ma14102636
Knihovny.cz E-zdroje
- Klíčová slova
- abaca, alkali treatment of fibers, coir, tensile properties, vegetable fibers,
- Publikační typ
- časopisecké články MeSH
Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.
Zobrazit více v PubMed
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI
Bledzki A.K., Gassan J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999;24:221–274. doi: 10.1016/S0079-6700(98)00018-5. DOI
Agarwal B., Broutman L., Chandrashekhara K. Analysis and Performance of Fiber Composites. 3rd ed. Wiley; New Delhi, India: 2006.
Wallenberger F.T., Bingham P.A. Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications. Springer; New York, NY, USA: 2010.
Bourmaud A., Beaugrand J., Shah D.U., Placet V., Baley C. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 2018;97:347–408. doi: 10.1016/j.pmatsci.2018.05.005. DOI
Mylsamy K., Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J. Reinf. Plast. Compos. 2010;29:2925–2935. doi: 10.1177/0731684410362817. DOI
Franck R. Bast and Other Plant Fibres. Woodhead Publishing; Cambridge, UK: 2005.
Cai M., Takagi H., Nakagaito A.N., Katoh M., Ueki T., Waterhouse G.I.N., Li Y. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 2015;65:27–35. doi: 10.1016/j.indcrop.2014.11.048. DOI
Fuqua M.A., Huo S., Ulven C.A. Natural fiber reinforced composites. Polym. Rev. 2012;52:259–320. doi: 10.1080/15583724.2012.705409. DOI
Kalia S., Kaith B.S., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009;49:1253–1272. doi: 10.1002/pen.21328. DOI
Edeerozey A.M.M., Akil H.M., Azhar A.B., Ariffin M.I.Z. Chemical modification of kenaf fibers. Mater. Lett. 2007;61:2023–2025. doi: 10.1016/j.matlet.2006.08.006. DOI
Rao M.M., Rao K.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007;77:288–295. doi: 10.1016/j.compstruct.2005.07.023. DOI
De Andrade Silva F., Chawla N., de Toledo Filho R.D. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 2008;68:3438–3443. doi: 10.1016/j.compscitech.2008.10.001. DOI
Herrera-Franco P., Valadez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Mathura N., Cree D. Characterization and mechanical property of Trinidad coir fibers. J. Appl. Polym. Sci. 2016;133:43692. doi: 10.1002/app.43692. DOI
Satyanarayana K.G., Pillai C.K.S., Sukumaran K., Pillai S.G.K., Rohatgi P.K., Vijayan K. Structure property studies of fibres from various parts of the coconut tree. J. Mater. Sci. 1982;17:2453–2462. doi: 10.1007/BF00543759. DOI
Shibata M., Ozawa K., Teramoto N., Yosomiya R., Takeishi H. Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol. Mater. Eng. 2003;288:35–43. doi: 10.1002/mame.200290031. DOI
Symington M.C., Banks W.M., West O.D., Pethrick R.A. Tensile testing of cellulose based natural fibers for structural composite applications. J. Compos. Mater. 2009;43:1083–1108. doi: 10.1177/0021998308097740. DOI
John M.J., Anandjiwala R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 2008;29:187–207. doi: 10.1002/pc.20461. DOI
Savastano H., Agopyan V., Nolasco A.M., Pimentel L. Plant fibre reinforced cement components for roofing. Constr. Build. Mater. 1999;13:433–438. doi: 10.1016/S0950-0618(99)00046-X. DOI
Munawar S.S., Umemura K., Kawai S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J. Wood Sci. 2007;53:108–113. doi: 10.1007/s10086-006-0836-x. DOI
Yan L., Chouw N., Huang L., Kasal B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016;112:168–182. doi: 10.1016/j.conbuildmat.2016.02.182. DOI
Kelly A. Concise Encyclopedia of Composite Materials. Elsevier; Amsterdam, The Netherlands: 1994.
Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI
Richter S., Stromann K., Müssig J. Abacá (Musa textilis) grades and their properties—A study of reproducible fibre characterization and a critical evaluation of existing grading systems. Ind. Crops Prod. 2013;42:601–612. doi: 10.1016/j.indcrop.2012.06.025. DOI
Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI
Prasad S.V., Pavithran C., Rohatgi P.K. Alkali treatment of coir fibres for coir-polyester composites. J. Mater. Sci. 1983;18:1443–1454. doi: 10.1007/BF01111964. DOI
Rahman M.M., Khan M.A. Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos. Sci. Technol. 2007;67:2369–2376. doi: 10.1016/j.compscitech.2007.01.009. DOI
Sreekala M.S., Kumaran M.G., Joseph S., Jacob M., Thomas S. Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance. Appl. Compos. Mater. 2000;7:295–329. doi: 10.1023/A:1026534006291. DOI
Thomas S., Woh Y.K., Wang R., Goh K.L. Probing the hydrophilicity of coir fibres: Analysis of the mechanical properties of single coir fibres. Procedia Eng. 2017;200:206–212. doi: 10.1016/j.proeng.2017.07.030. DOI
Alawar A., Hamed A.M., Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos. Part B Eng. 2009;40:601–606. doi: 10.1016/j.compositesb.2009.04.018. DOI
Cai M., Takagi H., Nakagaito A.N., Li Y., Waterhouse G.I.N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016;90:589–597. doi: 10.1016/j.compositesa.2016.08.025. DOI
Nitta Y., Goda K., Noda J., Lee W., II Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Compos. Part A Appl. Sci. Manuf. 2013;49:132–138. doi: 10.1016/j.compositesa.2013.02.003. DOI
Sghaier S., Zbidi F., Zidi M. Characterization of Doum Palm Fibers After Chemical Treatment. Text. Res. J. 2009;79:1108–1114. doi: 10.1177/0040517508101623. DOI
Nechwatal A., Mieck K.P., Reußmann T. Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Compos. Sci. Technol. 2003;63:1273–1279. doi: 10.1016/S0266-3538(03)00098-8. DOI
Haag K., Müssig J. Scatter in tensile properties of flax fibre bundles: Influence of determination and calculation of the cross-sectional area. J. Mater. Sci. 2016;51:7907–7917. doi: 10.1007/s10853-016-0052-z. DOI
Valášek P., D’Amato R., Müller M., Ruggiero A. Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos. Part B Eng. 2018;146:88–97. doi: 10.1016/j.compositesb.2018.04.003. DOI
Valášek P., Ruggiero A., Müller M. Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos. Part B Eng. 2017;122:79–88. doi: 10.1016/j.compositesb.2017.04.014. DOI
Valášek P., Müller M., Šleger V. Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources. 2017;12:5449–5461. doi: 10.15376/biores.12.3.5449-5461. DOI
Monteiro S.N., Margem F.M., Guimarães Santafé Júnior H.P., de Souza Martins L.B., Oliveira M.P. Correlation between the diameter and the density of coir fiber using the weibull statistic methodology. Mater. Sci. Forum. 2014;775–776:266–271. doi: 10.4028/www.scientific.net/MSF.775-776.266. DOI
George J., Sreekala M.S., Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001;41:1471–1485. doi: 10.1002/pen.10846. DOI
Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI
Bunsell A.R. Handbook of Tensile Properties of Textile and Technical Fibres. Elsevier Science & Technology; Kent, UK: 2009.
Morton W.E., Hearle J.W.S. Physical Properties of Textile Fibres. 4th ed. Woodhead Publishing; Cambridge, UK: 2008.
Negawo T.A., Polat Y., Buyuknalcaci F.N., Kilic A., Saba N., Jawaid M. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos. Struct. 2019;207:589–597. doi: 10.1016/j.compstruct.2018.09.043. DOI
Yilmaz N.D. Effect of chemical extraction parameters on corn husk fibres characteristics. Indian J. Fibre Text. Res. 2013;38:29–34.
Abdel-Halim E.S., El-Rafie M.H., Kohler R. Surface characterization of differently pretreated flax fibers and their application in fiber-reinforced composites. Polym. Plast. Technol. Eng. 2008;47:58–65. doi: 10.1080/03602550701580912. DOI
Boopathi L., Sampath P.S., Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012;43:3044–3052. doi: 10.1016/j.compositesb.2012.05.002. DOI
Ray D., Sarkar B.K., Rana A.K., Bose N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001;24:129–135. doi: 10.1007/BF02710089. DOI
Vigneswaran C., Jayapriya J. Effect on physical characteristics of jute fibres with cellulase and specific mixed enzyme systems. J. Text. Inst. 2010;101:506–513. doi: 10.1080/00405000802542333. DOI
Reddy N., Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI
Rout J., Misra M., Tripathy S.S., Nayak S.K., Mohanty A.K. The influence of fibre treatment of the performance of coir-polyester composites. Compos. Sci. Technol. 2001;61:1303–1310. doi: 10.1016/S0266-3538(01)00021-5. DOI
Müssig J. In: Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. Müssig J., editor. John Wiley & Sons, Ltd.; Chichester, UK: 2010.
Cyras V.P., Vallo C., Kenny J.M., Vázquez A. Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre. J. Compos. Mater. 2004;38:1387–1399.
Joseph P.V., Joseph K., Thomas S. Short sisal fiber reinforced polypropylene composites: The role of interface modification on ultimate properties. Compos. Interfaces. 2002;9:171–205. doi: 10.1163/156855402760116094. DOI
Herlina Sari N., Wardana I.N.G., Irawan Y.S., Siswanto E. Characterization of the Chemical, Physical, and Mechanical Properties of NaOH-treated Natural Cellulosic Fibers from Corn Husks. J. Nat. Fibers. 2018;15:545–558. doi: 10.1080/15440478.2017.1349707. DOI
Militký J. Textilní Vlákna: Klasická a Speciální. Technická Univerzita v Liberci, Fakulta Textilní; Liberec, Czech: 2012.
International Organization for Standardization . ČSN EN ISO 5079, Textiles—Fibres—Determination of Breaking Force and Elongation at Break of Individual Fibres. Czech Standardization Institute; Prague, Czech: 1997.
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Jamshaid H., Mishra R., Basra S., Rajput A.W., Hassan T., Petru M., Choteborsky R., Muller M. Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. J. Nat. Fibers. 2020 doi: 10.1080/15440478.2020.1843586. DOI
Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Monteiro S.N., Terrones L.A.H., D’Almeida J.R.M. Mechanical performance of coir fiber/polyester composites. Polym. Test. 2008;27:591–595. doi: 10.1016/j.polymertesting.2008.03.003. DOI
Bledzki A.K., Mamun A.A., Jaszkiewicz A., Erdmann K. Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 2010;70:854–860. doi: 10.1016/j.compscitech.2010.02.003. DOI
Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
Liu K., Takagi H., Yang Z. Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Compos. Part A Appl. Sci. Manuf. 2013;45:14–22. doi: 10.1016/j.compositesa.2012.09.006. DOI
Gassan J., Bledzki A.K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 1999;59:1303–1309. doi: 10.1016/S0266-3538(98)00169-9. DOI
Parre A., Karthikeyan B., Balaji A., Udhayasankar R. Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater. Today Proc. 2020;22:347–352. doi: 10.1016/j.matpr.2019.06.655. DOI
Kathirselvam M., Kumaravel A., Arthanarieswaran V.P., Saravanakumar S.S. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym. 2019;217:178–189. doi: 10.1016/j.carbpol.2019.04.063. PubMed DOI
Senthamaraikannan P., Kathiresan M. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr. Polym. 2018;186:332–343. doi: 10.1016/j.carbpol.2018.01.072. PubMed DOI
Ben Sghaier A.E.O., Chaabouni Y., Msahli S., Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind. Crops Prod. 2012;36:257–266. doi: 10.1016/j.indcrop.2011.09.012. DOI
Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI