Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers

. 2021 May 18 ; 14 (10) : . [epub] 20210518

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070001

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.

Zobrazit více v PubMed

Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC

Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI

Bledzki A.K., Gassan J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999;24:221–274. doi: 10.1016/S0079-6700(98)00018-5. DOI

Agarwal B., Broutman L., Chandrashekhara K. Analysis and Performance of Fiber Composites. 3rd ed. Wiley; New Delhi, India: 2006.

Wallenberger F.T., Bingham P.A. Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications. Springer; New York, NY, USA: 2010.

Bourmaud A., Beaugrand J., Shah D.U., Placet V., Baley C. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 2018;97:347–408. doi: 10.1016/j.pmatsci.2018.05.005. DOI

Mylsamy K., Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J. Reinf. Plast. Compos. 2010;29:2925–2935. doi: 10.1177/0731684410362817. DOI

Franck R. Bast and Other Plant Fibres. Woodhead Publishing; Cambridge, UK: 2005.

Cai M., Takagi H., Nakagaito A.N., Katoh M., Ueki T., Waterhouse G.I.N., Li Y. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 2015;65:27–35. doi: 10.1016/j.indcrop.2014.11.048. DOI

Fuqua M.A., Huo S., Ulven C.A. Natural fiber reinforced composites. Polym. Rev. 2012;52:259–320. doi: 10.1080/15583724.2012.705409. DOI

Kalia S., Kaith B.S., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009;49:1253–1272. doi: 10.1002/pen.21328. DOI

Edeerozey A.M.M., Akil H.M., Azhar A.B., Ariffin M.I.Z. Chemical modification of kenaf fibers. Mater. Lett. 2007;61:2023–2025. doi: 10.1016/j.matlet.2006.08.006. DOI

Rao M.M., Rao K.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007;77:288–295. doi: 10.1016/j.compstruct.2005.07.023. DOI

De Andrade Silva F., Chawla N., de Toledo Filho R.D. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 2008;68:3438–3443. doi: 10.1016/j.compscitech.2008.10.001. DOI

Herrera-Franco P., Valadez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI

Mathura N., Cree D. Characterization and mechanical property of Trinidad coir fibers. J. Appl. Polym. Sci. 2016;133:43692. doi: 10.1002/app.43692. DOI

Satyanarayana K.G., Pillai C.K.S., Sukumaran K., Pillai S.G.K., Rohatgi P.K., Vijayan K. Structure property studies of fibres from various parts of the coconut tree. J. Mater. Sci. 1982;17:2453–2462. doi: 10.1007/BF00543759. DOI

Shibata M., Ozawa K., Teramoto N., Yosomiya R., Takeishi H. Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol. Mater. Eng. 2003;288:35–43. doi: 10.1002/mame.200290031. DOI

Symington M.C., Banks W.M., West O.D., Pethrick R.A. Tensile testing of cellulose based natural fibers for structural composite applications. J. Compos. Mater. 2009;43:1083–1108. doi: 10.1177/0021998308097740. DOI

John M.J., Anandjiwala R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 2008;29:187–207. doi: 10.1002/pc.20461. DOI

Savastano H., Agopyan V., Nolasco A.M., Pimentel L. Plant fibre reinforced cement components for roofing. Constr. Build. Mater. 1999;13:433–438. doi: 10.1016/S0950-0618(99)00046-X. DOI

Munawar S.S., Umemura K., Kawai S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J. Wood Sci. 2007;53:108–113. doi: 10.1007/s10086-006-0836-x. DOI

Yan L., Chouw N., Huang L., Kasal B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016;112:168–182. doi: 10.1016/j.conbuildmat.2016.02.182. DOI

Kelly A. Concise Encyclopedia of Composite Materials. Elsevier; Amsterdam, The Netherlands: 1994.

Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI

Richter S., Stromann K., Müssig J. Abacá (Musa textilis) grades and their properties—A study of reproducible fibre characterization and a critical evaluation of existing grading systems. Ind. Crops Prod. 2013;42:601–612. doi: 10.1016/j.indcrop.2012.06.025. DOI

Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI

Prasad S.V., Pavithran C., Rohatgi P.K. Alkali treatment of coir fibres for coir-polyester composites. J. Mater. Sci. 1983;18:1443–1454. doi: 10.1007/BF01111964. DOI

Rahman M.M., Khan M.A. Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos. Sci. Technol. 2007;67:2369–2376. doi: 10.1016/j.compscitech.2007.01.009. DOI

Sreekala M.S., Kumaran M.G., Joseph S., Jacob M., Thomas S. Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance. Appl. Compos. Mater. 2000;7:295–329. doi: 10.1023/A:1026534006291. DOI

Thomas S., Woh Y.K., Wang R., Goh K.L. Probing the hydrophilicity of coir fibres: Analysis of the mechanical properties of single coir fibres. Procedia Eng. 2017;200:206–212. doi: 10.1016/j.proeng.2017.07.030. DOI

Alawar A., Hamed A.M., Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos. Part B Eng. 2009;40:601–606. doi: 10.1016/j.compositesb.2009.04.018. DOI

Cai M., Takagi H., Nakagaito A.N., Li Y., Waterhouse G.I.N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016;90:589–597. doi: 10.1016/j.compositesa.2016.08.025. DOI

Nitta Y., Goda K., Noda J., Lee W., II Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Compos. Part A Appl. Sci. Manuf. 2013;49:132–138. doi: 10.1016/j.compositesa.2013.02.003. DOI

Sghaier S., Zbidi F., Zidi M. Characterization of Doum Palm Fibers After Chemical Treatment. Text. Res. J. 2009;79:1108–1114. doi: 10.1177/0040517508101623. DOI

Nechwatal A., Mieck K.P., Reußmann T. Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Compos. Sci. Technol. 2003;63:1273–1279. doi: 10.1016/S0266-3538(03)00098-8. DOI

Haag K., Müssig J. Scatter in tensile properties of flax fibre bundles: Influence of determination and calculation of the cross-sectional area. J. Mater. Sci. 2016;51:7907–7917. doi: 10.1007/s10853-016-0052-z. DOI

Valášek P., D’Amato R., Müller M., Ruggiero A. Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos. Part B Eng. 2018;146:88–97. doi: 10.1016/j.compositesb.2018.04.003. DOI

Valášek P., Ruggiero A., Müller M. Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos. Part B Eng. 2017;122:79–88. doi: 10.1016/j.compositesb.2017.04.014. DOI

Valášek P., Müller M., Šleger V. Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources. 2017;12:5449–5461. doi: 10.15376/biores.12.3.5449-5461. DOI

Monteiro S.N., Margem F.M., Guimarães Santafé Júnior H.P., de Souza Martins L.B., Oliveira M.P. Correlation between the diameter and the density of coir fiber using the weibull statistic methodology. Mater. Sci. Forum. 2014;775–776:266–271. doi: 10.4028/www.scientific.net/MSF.775-776.266. DOI

George J., Sreekala M.S., Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001;41:1471–1485. doi: 10.1002/pen.10846. DOI

Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI

Bunsell A.R. Handbook of Tensile Properties of Textile and Technical Fibres. Elsevier Science & Technology; Kent, UK: 2009.

Morton W.E., Hearle J.W.S. Physical Properties of Textile Fibres. 4th ed. Woodhead Publishing; Cambridge, UK: 2008.

Negawo T.A., Polat Y., Buyuknalcaci F.N., Kilic A., Saba N., Jawaid M. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos. Struct. 2019;207:589–597. doi: 10.1016/j.compstruct.2018.09.043. DOI

Yilmaz N.D. Effect of chemical extraction parameters on corn husk fibres characteristics. Indian J. Fibre Text. Res. 2013;38:29–34.

Abdel-Halim E.S., El-Rafie M.H., Kohler R. Surface characterization of differently pretreated flax fibers and their application in fiber-reinforced composites. Polym. Plast. Technol. Eng. 2008;47:58–65. doi: 10.1080/03602550701580912. DOI

Boopathi L., Sampath P.S., Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012;43:3044–3052. doi: 10.1016/j.compositesb.2012.05.002. DOI

Ray D., Sarkar B.K., Rana A.K., Bose N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001;24:129–135. doi: 10.1007/BF02710089. DOI

Vigneswaran C., Jayapriya J. Effect on physical characteristics of jute fibres with cellulase and specific mixed enzyme systems. J. Text. Inst. 2010;101:506–513. doi: 10.1080/00405000802542333. DOI

Reddy N., Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI

Rout J., Misra M., Tripathy S.S., Nayak S.K., Mohanty A.K. The influence of fibre treatment of the performance of coir-polyester composites. Compos. Sci. Technol. 2001;61:1303–1310. doi: 10.1016/S0266-3538(01)00021-5. DOI

Müssig J. In: Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. Müssig J., editor. John Wiley & Sons, Ltd.; Chichester, UK: 2010.

Cyras V.P., Vallo C., Kenny J.M., Vázquez A. Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre. J. Compos. Mater. 2004;38:1387–1399.

Joseph P.V., Joseph K., Thomas S. Short sisal fiber reinforced polypropylene composites: The role of interface modification on ultimate properties. Compos. Interfaces. 2002;9:171–205. doi: 10.1163/156855402760116094. DOI

Herlina Sari N., Wardana I.N.G., Irawan Y.S., Siswanto E. Characterization of the Chemical, Physical, and Mechanical Properties of NaOH-treated Natural Cellulosic Fibers from Corn Husks. J. Nat. Fibers. 2018;15:545–558. doi: 10.1080/15440478.2017.1349707. DOI

Militký J. Textilní Vlákna: Klasická a Speciální. Technická Univerzita v Liberci, Fakulta Textilní; Liberec, Czech: 2012.

International Organization for Standardization . ČSN EN ISO 5079, Textiles—Fibres—Determination of Breaking Force and Elongation at Break of Individual Fibres. Czech Standardization Institute; Prague, Czech: 1997.

Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC

Jamshaid H., Mishra R., Basra S., Rajput A.W., Hassan T., Petru M., Choteborsky R., Muller M. Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. J. Nat. Fibers. 2020 doi: 10.1080/15440478.2020.1843586. DOI

Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI

Monteiro S.N., Terrones L.A.H., D’Almeida J.R.M. Mechanical performance of coir fiber/polyester composites. Polym. Test. 2008;27:591–595. doi: 10.1016/j.polymertesting.2008.03.003. DOI

Bledzki A.K., Mamun A.A., Jaszkiewicz A., Erdmann K. Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 2010;70:854–860. doi: 10.1016/j.compscitech.2010.02.003. DOI

Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

Liu K., Takagi H., Yang Z. Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Compos. Part A Appl. Sci. Manuf. 2013;45:14–22. doi: 10.1016/j.compositesa.2012.09.006. DOI

Gassan J., Bledzki A.K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 1999;59:1303–1309. doi: 10.1016/S0266-3538(98)00169-9. DOI

Parre A., Karthikeyan B., Balaji A., Udhayasankar R. Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater. Today Proc. 2020;22:347–352. doi: 10.1016/j.matpr.2019.06.655. DOI

Kathirselvam M., Kumaravel A., Arthanarieswaran V.P., Saravanakumar S.S. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym. 2019;217:178–189. doi: 10.1016/j.carbpol.2019.04.063. PubMed DOI

Senthamaraikannan P., Kathiresan M. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr. Polym. 2018;186:332–343. doi: 10.1016/j.carbpol.2018.01.072. PubMed DOI

Ben Sghaier A.E.O., Chaabouni Y., Msahli S., Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind. Crops Prod. 2012;36:257–266. doi: 10.1016/j.indcrop.2011.09.012. DOI

Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...