Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles

. 2020 Jun 22 ; 12 (6) : . [epub] 20200622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32580294

Grantová podpora
2020:31140/1312/3107 Internal grant agency of Faculty of Engineering
CZ.02.1.01/0.0/0.0/18_069/0010045 OP VVV Project Development of new nano and micro coatings on the surface of selected metallic materials - NANOTECH ITI II

The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler. The adhesive bonds were exposed to cyclic loading and their service life and mechanical properties were evaluated. Testing was performed by 1000 cycles at 5-30% (165-989 N) and 5-70% (165-2307 N) of the maximum load of the filler-free bond in the static test. The results of the research show the importance of cyclic loading on the service life and mechanical properties of adhesive bonds. Quasi-static tests demonstrated significant differences between measured intervals of cyclic loading. All adhesive bonds resisted 1000 cycles of the quasi-static test with an interval loading 5-30%. The number of completed quasi-static tests with the interval loading 5-70% was significantly lower. The filler positively influenced the service life of adhesive bonds at a higher amount of quasi-static tests, i.e., the safety of adhesive bonds increased. The filler had a positive effect on adhesive bonds ABF2, where the strength significantly increased up to 20.26% at the loading of 5-30% against adhesive bonds ABF0. A viscoelasticity characteristic (creep) of the adhesive layer occurred at higher values of loading, i.e., between loading 5-70%. The viscoelasticity behavior did not occur at lower values of loading, i.e., between loading 5-30%.

Zobrazit více v PubMed

Rudawska A., Haniecka I., Jaszek M., Stefaniuk D. The influence of adhesive compounds biochemical modification on the mechanical properties of adhesive joints. Polymers (Basel) 2018;10:344. doi: 10.3390/polym10040344. PubMed DOI PMC

Barnes T.A., Pashby I.R. Joining techniques for aluminum spaceframes used in automobiles. Part II - adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI

Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI

Kolář V., Tichý M., Müller M., Valášek P., Rudawska A. Research on influence of cyclic degradation process on changes of structural adhesive bonds mechanical properties. Agron. Res. 2019;17:1062–1070. doi: 10.15159/AR.19.090. DOI

Tichy M., Kolar V., Muller M., Valasek P. Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder; Proceedings of the Engineering for Rural Development; Latvia University of Life Sciences and Technologies, Jelgava, Latvia. 22–24 May 2019; pp. 1035–1041.

Müller M., Valášek P. Assessment of bonding quality for several commercially available adhesives. Agron. Res. 2013;11:155–162.

Bresson G., Jumel J., Shanahan M.E.R., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI

Grant L.D.R., Adams R.D., da Silva L.F.M. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry. Int. J. Adhes. Adhes. 2009;29:535–542. doi: 10.1016/j.ijadhadh.2009.01.002. DOI

da Silva L.F.M., Carbas R.J.C., Critchlow G.W., Figueiredo M.A.V., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI

Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers (Basel) 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC

Miturska I., Rudawska A., Müller M., Valášek P. The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time. Materials (Basel) 2020;13:291. doi: 10.3390/ma13020291. PubMed DOI PMC

Rudawska A., Miturska I., Szabelski J., Skoczylas A., Droździel P., Bociąga E., Madleňák R., Kasperek D. Experimental research and statistic analysis of polymer composite adhesive joints strength. J. Phys. Conf. Ser. 2017;842:012074. doi: 10.1088/1742-6596/842/1/012074. DOI

Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI

Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI

Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI

Panigrahi A., Jena H., Surekha B. Proceedings of the Materials Today: Proceedings. Vol. 5. Elsevier Ltd.; Amsterdam, The Netherlands: 2018. Effect of Clams Shell in Impact Properties of Jute Epoxy Composite; pp. 19997–20001.

Verma N., Kumar V., Bansal C.M. Utilization of Egg Shell Waste in Cellulase Production by Neurospora crassa under Wheat Bran-Based Solid State Fermentation. Polish J. Enviromental Stud. 2012;21:491–497.

Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 nanoparticles on basalt/polysiloxane composites: Mechanical and thermal characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI

Barczewski M., Sałasińska K., Szulc J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019;75:1–11. doi: 10.1016/j.polymertesting.2019.01.017. DOI

Ayrilmis N., Kaymakci A., Ozdemir F. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J. Ind. Eng. Chem. 2013;19:908–914. doi: 10.1016/j.jiec.2012.11.006. DOI

Essabir H., Nekhlaoui S., Malha M., Bensalah M.O., Arrakhiz F.Z., Qaiss A., Bouhfid R. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Mater. Des. 2013;51:225–230. doi: 10.1016/j.matdes.2013.04.031. DOI

Vijaya Ramnath B., Jeykrishnan J., Ramakrishnan G., Barath B., Ejoelavendhan E., Arun Raghav P. Proceedings of the Materials Today: Proceedings. Vol. 5. Elsevier Ltd.; Amsterdam, The Netherlands: 2018. Sea Shells and Natural Fibres Composites: A Review; pp. 1846–1851.

Iyer K.A., Torkelson J.M. Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Compos. Sci. Technol. 2014;102:152–160. doi: 10.1016/j.compscitech.2014.07.029. DOI

Arias J.L., Fernández M.S. Proceedings of the Materials Characterization. Vol. 50. Elsevie; Amsterdam, The Netherlands: 2003. Biomimetic processes through the study of mineralized shells; pp. 189–195.

Yew M.C., Ramli Sulong N.H., Yew M.K., Amalina M.A., Johan M.R. Eggshells: A novel bio-filler for intumescent flame-retardant coatings. Prog. Org. Coatings. 2015;81:116–124. doi: 10.1016/j.porgcoat.2015.01.003. DOI

Viriya-empikul N., Krasae P., Puttasawat B., Yoosuk B., Chollacoop N., Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 2010;101:3765–3767. doi: 10.1016/j.biortech.2009.12.079. PubMed DOI

Oliveira D.A., Benelli P., Amante E.R. A literature review on adding value to solid residues: Egg shells. J. Clean. Prod. 2013;46:42–47. doi: 10.1016/j.jclepro.2012.09.045. DOI

Zieleniewska M., Leszczyński M.K., Szczepkowski L., Bryśkiewicz A., Krzyżowska M., Bień K., Ryszkowska J. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym. Degrad. Stab. 2016;132:78–86. doi: 10.1016/j.polymdegradstab.2016.02.030. DOI

Toro P., Quijada R., Yazdani-Pedram M., Arias J.L. Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 2007;61:4347–4350. doi: 10.1016/j.matlet.2007.01.102. DOI

Müller M., Valášek P. Proceedings of the Journal of Physics: Conference Series. Vol. 1016. IOP Publishing; Bristol, UK: 2018. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste; p. 12002.

Hafiz T.A., Abdel Wahab M.M., Crocombe A.D., Smith P.A. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI

Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI

Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.

Šleger V., Müller M. Low-cyclic fatigue of adhesive bonds. Manuf. Technol. 2016;16:1151–1157. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1151. DOI

Šleger V., Müller M. Quasi Static Tests of Adhesive Bonds of Alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698.

Broughton W.R., Mera R.D., Hinopoulos G. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999 Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. [(accessed on 22 June 2020)];Environments. 1999 Available online: http://eprintspublications.npl.co.uk/1239/1/CMMT191.pdf.

Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.

Kolar V., Muller M. Research on Influence of Polyurethane Adhesive Modified by Polyurethane Filler Based on Recyclate. Manuf. Technol. 2018;18:418–423. doi: 10.21062/ujep/115.2018/a/1213-2489/MT/18/3/418. DOI

International Organization for Standardization . ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Czech Standardization Institute; Prague, Czech: 2009.

Comyn J. Surface treatment and analysis for adhesive bonding. Int. J. Adhes. Adhes. 1990;10:161–165. doi: 10.1016/0143-7496(90)90099-J. DOI

Rudawska A., Wahab M.A. The effect of cataphoretic and powder coatings on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints. Int. J. Adhes. Adhes. 2019;89:40–50. doi: 10.1016/j.ijadhadh.2018.11.005. DOI

Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evaluation of Mechanical Properties and Filler Interaction in the Field of SLA Polymeric Additive Manufacturing

. 2023 Jul 12 ; 16 (14) : . [epub] 20230712

Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading

. 2023 Jan 12 ; 15 (2) : . [epub] 20230112

Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction

. 2022 Jun 03 ; 14 (11) : . [epub] 20220603

Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler

. 2022 Mar 23 ; 14 (7) : . [epub] 20220323

Service Life of Adhesive Bonds under Cyclic Loading with a Filler Based on Natural Waste from Coconut Oil Production

. 2022 Mar 04 ; 14 (5) : . [epub] 20220304

Experimental Investigation of Wavy-Lap Bonds with Natural Cotton Fabric Reinforcement under Cyclic Loading

. 2021 Aug 26 ; 13 (17) : . [epub] 20210826

Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers

. 2021 May 18 ; 14 (10) : . [epub] 20210518

Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer

. 2020 Dec 09 ; 12 (12) : . [epub] 20201209

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...