Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2020:31140/1312/3107
Internal grant agency of Faculty of Engineering
CZ.02.1.01/0.0/0.0/18_069/0010045
OP VVV Project Development of new nano and micro coatings on the surface of selected metallic materials - NANOTECH ITI II
PubMed
32580294
PubMed Central
PMC7361947
DOI
10.3390/polym12061391
PII: polym12061391
Knihovny.cz E-zdroje
- Klíčová slova
- cyclic loading, hybrid adhesive bond, mechanical properties, polymer composite, service life,
- Publikační typ
- časopisecké články MeSH
The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler. The adhesive bonds were exposed to cyclic loading and their service life and mechanical properties were evaluated. Testing was performed by 1000 cycles at 5-30% (165-989 N) and 5-70% (165-2307 N) of the maximum load of the filler-free bond in the static test. The results of the research show the importance of cyclic loading on the service life and mechanical properties of adhesive bonds. Quasi-static tests demonstrated significant differences between measured intervals of cyclic loading. All adhesive bonds resisted 1000 cycles of the quasi-static test with an interval loading 5-30%. The number of completed quasi-static tests with the interval loading 5-70% was significantly lower. The filler positively influenced the service life of adhesive bonds at a higher amount of quasi-static tests, i.e., the safety of adhesive bonds increased. The filler had a positive effect on adhesive bonds ABF2, where the strength significantly increased up to 20.26% at the loading of 5-30% against adhesive bonds ABF0. A viscoelasticity characteristic (creep) of the adhesive layer occurred at higher values of loading, i.e., between loading 5-70%. The viscoelasticity behavior did not occur at lower values of loading, i.e., between loading 5-30%.
Zobrazit více v PubMed
Rudawska A., Haniecka I., Jaszek M., Stefaniuk D. The influence of adhesive compounds biochemical modification on the mechanical properties of adhesive joints. Polymers (Basel) 2018;10:344. doi: 10.3390/polym10040344. PubMed DOI PMC
Barnes T.A., Pashby I.R. Joining techniques for aluminum spaceframes used in automobiles. Part II - adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI
Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI
Kolář V., Tichý M., Müller M., Valášek P., Rudawska A. Research on influence of cyclic degradation process on changes of structural adhesive bonds mechanical properties. Agron. Res. 2019;17:1062–1070. doi: 10.15159/AR.19.090. DOI
Tichy M., Kolar V., Muller M., Valasek P. Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder; Proceedings of the Engineering for Rural Development; Latvia University of Life Sciences and Technologies, Jelgava, Latvia. 22–24 May 2019; pp. 1035–1041.
Müller M., Valášek P. Assessment of bonding quality for several commercially available adhesives. Agron. Res. 2013;11:155–162.
Bresson G., Jumel J., Shanahan M.E.R., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI
Grant L.D.R., Adams R.D., da Silva L.F.M. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry. Int. J. Adhes. Adhes. 2009;29:535–542. doi: 10.1016/j.ijadhadh.2009.01.002. DOI
da Silva L.F.M., Carbas R.J.C., Critchlow G.W., Figueiredo M.A.V., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI
Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers (Basel) 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Miturska I., Rudawska A., Müller M., Valášek P. The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time. Materials (Basel) 2020;13:291. doi: 10.3390/ma13020291. PubMed DOI PMC
Rudawska A., Miturska I., Szabelski J., Skoczylas A., Droździel P., Bociąga E., Madleňák R., Kasperek D. Experimental research and statistic analysis of polymer composite adhesive joints strength. J. Phys. Conf. Ser. 2017;842:012074. doi: 10.1088/1742-6596/842/1/012074. DOI
Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI
Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI
Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI
Panigrahi A., Jena H., Surekha B. Proceedings of the Materials Today: Proceedings. Vol. 5. Elsevier Ltd.; Amsterdam, The Netherlands: 2018. Effect of Clams Shell in Impact Properties of Jute Epoxy Composite; pp. 19997–20001.
Verma N., Kumar V., Bansal C.M. Utilization of Egg Shell Waste in Cellulase Production by Neurospora crassa under Wheat Bran-Based Solid State Fermentation. Polish J. Enviromental Stud. 2012;21:491–497.
Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 nanoparticles on basalt/polysiloxane composites: Mechanical and thermal characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI
Barczewski M., Sałasińska K., Szulc J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019;75:1–11. doi: 10.1016/j.polymertesting.2019.01.017. DOI
Ayrilmis N., Kaymakci A., Ozdemir F. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J. Ind. Eng. Chem. 2013;19:908–914. doi: 10.1016/j.jiec.2012.11.006. DOI
Essabir H., Nekhlaoui S., Malha M., Bensalah M.O., Arrakhiz F.Z., Qaiss A., Bouhfid R. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Mater. Des. 2013;51:225–230. doi: 10.1016/j.matdes.2013.04.031. DOI
Vijaya Ramnath B., Jeykrishnan J., Ramakrishnan G., Barath B., Ejoelavendhan E., Arun Raghav P. Proceedings of the Materials Today: Proceedings. Vol. 5. Elsevier Ltd.; Amsterdam, The Netherlands: 2018. Sea Shells and Natural Fibres Composites: A Review; pp. 1846–1851.
Iyer K.A., Torkelson J.M. Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Compos. Sci. Technol. 2014;102:152–160. doi: 10.1016/j.compscitech.2014.07.029. DOI
Arias J.L., Fernández M.S. Proceedings of the Materials Characterization. Vol. 50. Elsevie; Amsterdam, The Netherlands: 2003. Biomimetic processes through the study of mineralized shells; pp. 189–195.
Yew M.C., Ramli Sulong N.H., Yew M.K., Amalina M.A., Johan M.R. Eggshells: A novel bio-filler for intumescent flame-retardant coatings. Prog. Org. Coatings. 2015;81:116–124. doi: 10.1016/j.porgcoat.2015.01.003. DOI
Viriya-empikul N., Krasae P., Puttasawat B., Yoosuk B., Chollacoop N., Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 2010;101:3765–3767. doi: 10.1016/j.biortech.2009.12.079. PubMed DOI
Oliveira D.A., Benelli P., Amante E.R. A literature review on adding value to solid residues: Egg shells. J. Clean. Prod. 2013;46:42–47. doi: 10.1016/j.jclepro.2012.09.045. DOI
Zieleniewska M., Leszczyński M.K., Szczepkowski L., Bryśkiewicz A., Krzyżowska M., Bień K., Ryszkowska J. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym. Degrad. Stab. 2016;132:78–86. doi: 10.1016/j.polymdegradstab.2016.02.030. DOI
Toro P., Quijada R., Yazdani-Pedram M., Arias J.L. Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 2007;61:4347–4350. doi: 10.1016/j.matlet.2007.01.102. DOI
Müller M., Valášek P. Proceedings of the Journal of Physics: Conference Series. Vol. 1016. IOP Publishing; Bristol, UK: 2018. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste; p. 12002.
Hafiz T.A., Abdel Wahab M.M., Crocombe A.D., Smith P.A. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.
Šleger V., Müller M. Low-cyclic fatigue of adhesive bonds. Manuf. Technol. 2016;16:1151–1157. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1151. DOI
Šleger V., Müller M. Quasi Static Tests of Adhesive Bonds of Alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698.
Broughton W.R., Mera R.D., Hinopoulos G. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999 Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. [(accessed on 22 June 2020)];Environments. 1999 Available online: http://eprintspublications.npl.co.uk/1239/1/CMMT191.pdf.
Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.
Kolar V., Muller M. Research on Influence of Polyurethane Adhesive Modified by Polyurethane Filler Based on Recyclate. Manuf. Technol. 2018;18:418–423. doi: 10.21062/ujep/115.2018/a/1213-2489/MT/18/3/418. DOI
International Organization for Standardization . ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Czech Standardization Institute; Prague, Czech: 2009.
Comyn J. Surface treatment and analysis for adhesive bonding. Int. J. Adhes. Adhes. 1990;10:161–165. doi: 10.1016/0143-7496(90)90099-J. DOI
Rudawska A., Wahab M.A. The effect of cataphoretic and powder coatings on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints. Int. J. Adhes. Adhes. 2019;89:40–50. doi: 10.1016/j.ijadhadh.2018.11.005. DOI
Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.
Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction
Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler
Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer