Experimental Investigation of Wavy-Lap Bonds with Natural Cotton Fabric Reinforcement under Cyclic Loading
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021:31140/1312/3108
Internal grant agency of Faculty of Engineering no. 2021:31140/1312/3108 "Experimental research of hybrid adhesive bonds with multilayer sandwich construction, Czech University of Life Sciences Prague".
PubMed
34502912
PubMed Central
PMC8434299
DOI
10.3390/polym13172872
PII: polym13172872
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, cyclic fatigue, mechanical properties, natural cotton fabric, polymer composite, quasi-static test, safety, service life, wavy-lap bond,
- Publikační typ
- časopisecké články MeSH
This study is focused on the mechanical properties and service life (safety) evaluation of hybrid adhesive bonds with shaped overlapping geometry (wavy-lap) and 100% natural cotton fabric used as reinforcement under cyclic loading using various intensities. Cyclic loading were implemented between 5-50% (267-2674 N) and 5-70% (267-3743 N) from the maximum strength (5347 N) measured by static tensile test. The adhesive bonds were loaded by 1000 cycles. The test results demonstrated a positive influence of the used reinforcement on the mechanical properties, especially during the cyclic loading. The adhesive bonds Tera-Flat withstood the cyclic load intensity from 5-70% (267-3743 N). The shaped overlapping geometry (wavy-lap bond) did not have any positive influence on the mechanical performance, and only the composite adhesive bonds Erik-WH1 and Tera-WH1 withstood the complete 1000 cycles with cyclic loading values between 5-50% (267-2674 N). The SEM analysis results demonstrated a positive influence on the fabric surface by treatment with 10% NaOH aqueous solution. The unwanted compounds (lignin) were removed. Furthermore, a good wettability has been demonstrated by the bonded matrix material. The SEM analysis also demonstrated micro-cracks formation, with subsequent delamination of the matrix/reinforcement interface caused by cyclic loading. The experimental research was conducted for the analysis of hybrid adhesive bonds using curved/wavy overlapping during both static and cyclic loading.
Zobrazit více v PubMed
Barnes T., Pashby I. Joining techniques for aluminium spaceframes used in automobiles: Part II—Adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI
Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI
Banea M.D., Da Silva L.F.M. Adhesively bonded joints in composite materials: An overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009;223:1–18. doi: 10.1243/14644207JMDA219. DOI
Adams R.D. Adhesive Bonding: Science, Technology and Applications. Woodhead Publishing; Abington Cambridge, UK: 2005.
Pizzi A., Mittal K.L. Handbook of Adhesive Technology. CRS Press Taylor & Francis Group; Boca Raton, FL, USA: 2003.
Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI
Bahrami B., Ayatollahi M., Beigrezaee M., da Silva L. Strength improvement in single lap adhesive joints by notching the adherends. Int. J. Adhes. Adhes. 2019;95:102401. doi: 10.1016/j.ijadhadh.2019.102401. DOI
Stoeckel F., Konnerth J., Gindl-Altmutter W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013;45:32–41. doi: 10.1016/j.ijadhadh.2013.03.013. DOI
Kolář V., Tichý M., Müller M., Valášek P., Rudawska A. Research on influence of cyclic degradation process on changes of structural adhesive bonds mechanical properties. Agron. Res. 2019;17:1062–1070. doi: 10.15159/AR.19.090. DOI
Han X., Crocombe A., Anwar S.N.R., Hu P. The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment. Int. J. Adhes. Adhes. 2014;55:1–11. doi: 10.1016/j.ijadhadh.2014.06.013. DOI
Krolczyk G., Raos P., Legutko S. Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Teh. Vjesn. 2014;21:217–221.
Nieslony P., Krolczyk G.M., Wojciechowski S., Chudy R., Zak K., Maruda R.W. Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 2018;434:91–101. doi: 10.1016/j.apsusc.2017.10.158. DOI
Rudawska A. Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. Int. J. Adhes. Adhes. 2014;50:235–243. doi: 10.1016/j.ijadhadh.2014.01.032. DOI
Bresson G., Jumel J., Shanahan M.E., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI
Mishra R., Militky J., Gupta N., Pachauri R., Behera B. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Broughton W.R., Mera R., Hinopoulos G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. National Physical Laboratory; Teddington, UK: 1999. NPL Report.
Akrami R., Anjum S., Fotouhi S., Boaretto J., De Camargo F.V., Fotouhi M. Investigating the effect of interface morphology in adhesively bonded composite wavy-lap joints. J. Compos. Sci. 2021;5:32. doi: 10.3390/jcs5010032. DOI
Behera B.K., Pattanayak A.K., Mishra R. Prediction of fabric drape behaviour using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI
Tichý M., Kolář V., Müller M., Mishra R.K., Šleger V., Hromasová M. Quasi-static shear test of hybrid adhesive bonds based on treated cotton-epoxy resin layer. Polymers. 2020;12:2945. doi: 10.3390/polym12122945. PubMed DOI PMC
Boss J., Ganesh V., Lim C.T. Modulus grading versus geometrical grading of composite adherends in single-lap bonded joints. Compos. Struct. 2003;62:113–121. doi: 10.1016/S0263-8223(03)00097-7. DOI
Da Silva L., Adams R.D. Techniques to reduce the peel stresses in adhesive joints with composites. Int. J. Adhes. Adhes. 2007;27:227–235. doi: 10.1016/j.ijadhadh.2006.04.001. DOI
Zeng Q.-G., Sun C.T. Novel design of a bonded lap joint. AIAA J. 2001;39:1991–1996. doi: 10.2514/2.1191. DOI
Ávila A.F., Bueno P.d.O. Stress analysis on a wavy-lap bonded joint for composites. Int. J. Adhes. Adhes. 2004;24:407–414. doi: 10.1016/j.ijadhadh.2003.12.001. DOI
Müller M. Research on constructional shape of bond at connecting galvanized sheet of metal. Manuf. Technol. 2015;15:392–396. doi: 10.21062/ujep/x.2015/a/1213-2489/mt/15/3/392. DOI
Jaiswal P., Hirulkar N., Papadakis L., Jaiswal R.R., Joshi N.B. Parametric study of non flat interface adhesively bonded joint. Mater. Today Proc. 2018;5:17654–17663. doi: 10.1016/j.matpr.2018.06.085. DOI
Haghpanah B., Chiu S., Vaziri A. Adhesively bonded lap joints with extreme interface geometry. Int. J. Adhes. Adhes. 2014;48:130–138. doi: 10.1016/j.ijadhadh.2013.09.041. DOI
Razavi S., Berto F., Peron M., Torgersen J. Parametric study of adhesive joints with non-flat sinusoid interfaces. Theor. Appl. Fract. Mech. 2017;93:44–55. doi: 10.1016/j.tafmec.2017.06.019. DOI
Herrera-Franco P., Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Alkbir M.F., Sapuan S.M., Nuraini A.A., Ishak M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI
Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI
Dalmay P., Smith A., Chotard T., Sahay-Turner P., Gloaguen V., Krausz P. Properties of cellulosic fibre reinforced plaster: Influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 2010;45:793–803. doi: 10.1007/s10853-009-4002-x. DOI
Mishra R., Militky J., Baheti V., Huang J., Kale B., Venkataraman M., Bele V., Arumugam V., Zhu G., Wang Y. The production, characterization and applications of nanoparticles in the textile industry. Text. Prog. 2014;46:133–226. doi: 10.1080/00405167.2014.964474. DOI
Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.
Valadez-Gonzalez A., Cervantes-Uc J., Olayo R., Herrera-Franco P. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Müller M., Valášek P., Kolář V., Šleger V., Gürdil G.A.K., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Valášek P., Müller M., Šleger V., Kolář V., Hromasová M., D’Amato R., Ruggiero A. Influence of alkali treatment on the microstructure and mechanical properties of coir and abaca fibers. Materials. 2021;14:2636. doi: 10.3390/ma14102636. PubMed DOI PMC
Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI
Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl. Surf. Sci. 2017;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI
Ferdous W., Manalo A., Yu P., Salih C., Abousnina R., Heyer T., Schubel P. Tensile fatigue behavior of polyester and vinyl ester based gfrp laminates—A comparative evaluation. Polymers. 2021;13:386. doi: 10.3390/polym13030386. PubMed DOI PMC
Ferdous W., Manalo A., Peauril J., Salih C., Reddy K.R., Yu P., Schubel P., Heyer T. Testing and modelling the fatigue behaviour of GFRP composites—Effect of stress level, stress concentration and frequency. Eng. Sci. Technol. Int. J. 2020;23:1223–1232. doi: 10.1016/j.jestch.2020.01.001. DOI
Saraç I., Adin H., Temiz Ş. Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Compos. Part B Eng. 2018;155:92–103. doi: 10.1016/j.compositesb.2018.08.006. DOI
Hafiz T., Wahab M.A., Crocombe A., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Šleger V., Müller M. Quasi static tests of adhesive bonds of alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/694. DOI
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
International Organization for Standardization . ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Czech Standardization Institute; Prague, Czech Republic: 2009.
DIN 17120 Grade St 37-3—Low Carbon Steel—Matmatch. [(accessed on 13 May 2021)]; Available online: https://matmatch.com/materials/minfm31305-din-17120-grade-st-37-3.
Rudawska A., Zaleski K., Miturska I., Skoczylas A. Effect of the application of different surface treatment methods on the strength of titanium alloy sheet adhesive lap joints. Materials. 2019;12:4173. doi: 10.3390/ma12244173. PubMed DOI PMC
Svitap.cz. [(accessed on 19 May 2021)]; Available online: https://www.tkaniny-svitap.cz/kcfinder/upload/file/vzorkovnik.pdf.
Boopathi L., Sampath P., Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012;43:3044–3052. doi: 10.1016/j.compositesb.2012.05.002. DOI
Bunsell A.R. Handbook of Tensile Properties of Textile and Technical Fibres. 2nd ed. Woodhead Publishing; Sawston, UK: 2018.
CHS-EPOXY 324 (EPOXY 1200) and Hardener P11. [(accessed on 19 May 2021)]; Available online: https://havel-composites.com/uploads/files/products/335/2bf05fdbe434cf27e38cd1554c43a9a4792aa4db.pdf.
Kolář V., Müller M., Tichý M., Rudawska A., Hromasová M. Influence of preformed adherent angle and reinforcing glass fibre on tensile strength of hybrid adhesive bond. Manuf. Technol. 2019;19:786–791. doi: 10.21062/ujep/372.2019/a/1213-2489/MT/19/5/786. DOI
You M., Li Z., Zheng X.-L., Yu S., Li G.-Y., Sun D.-X. A numerical and experimental study of preformed angle in the lap zone on adhesively bonded steel single lap joint. Int. J. Adhes. Adhes. 2009;29:280–285. doi: 10.1016/j.ijadhadh.2008.07.001. DOI
Ávila A.F., Bueno P.D.O. An experimental and numerical study on adhesive joints for composites. Compos. Struct. 2004;64:531–537. doi: 10.1016/j.compstruct.2003.09.052. DOI
Campilho R., de Moura M., Domingues J. Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes. Int. J. Adhes. Adhes. 2009;29:195–205. doi: 10.1016/j.ijadhadh.2008.03.005. DOI
Müller M., Herák D. Dimensioning of the bonded lap joint. Res. Agric. Eng. 2010;56:59–68. doi: 10.17221/35/2009-RAE. DOI
Grant L., Adams R., da Silva L.F. Experimental and numerical analysis of single-lap joints for the automotive industry. Int. J. Adhes. Adhes. 2009;29:405–413. doi: 10.1016/j.ijadhadh.2008.09.001. DOI
Tichý M., Kolář V., Muller M., Valasek P. Engineering for Rural Development. Volume 18. Latvia University of Life Sciences and Technologies; Jelgava, Latvia: 2019. Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder; pp. 1035–1041.
Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.
Symington M.C., Banks W.M., West O.D., Pethrick R.A. Tensile testing of cellulose based natural fibers for structural composite applications. J. Compos. Mater. 2009;43:1083–1108. doi: 10.1177/0021998308097740. DOI
Kalia S., Kaith B., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polym. Eng. Sci. 2009;49:1253–1272. doi: 10.1002/pen.21328. DOI
Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI
Valasek P., Müller M., Šleger V. Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources. 2017;12:5449–5461. doi: 10.15376/biores.12.3.5449-5461. DOI
Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI
Miturska I., Rudawska A., Müller M., Hromasová M. The Influence of mixing methods of epoxy composition ingredients on selected mechanical properties of modified epoxy construction materials. Materials. 2021;14:411. doi: 10.3390/ma14020411. PubMed DOI PMC
Miturska I., Rudawska A., Müller M., Valášek P. The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time. Materials. 2020;13:291. doi: 10.3390/ma13020291. PubMed DOI PMC
Rudawska A. The effect of the salt water aging on the mechanical properties of epoxy adhesives compounds. Polymers. 2020;12:843. doi: 10.3390/polym12040843. PubMed DOI PMC
Ayatollahi M.R., Samari M., Razavi S.M.J., da Silva L. Fatigue performance of adhesively bonded single lap joints with non-flat sinusoid interfaces. Fatigue Fract. Eng. Mater. Struct. 2017;40:1355–1363. doi: 10.1111/ffe.12575. DOI
Da Silva L.F., Carbas R., Critchlow G., Figueiredo M., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI