The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
030/RID/2018/19
The project Lublin University of Technology - Regional Excellence Initiative, funded by the POLISH MINISTRY OF SCIENCE AND HIGHER EDUCATION
030/RID/2018/19
The project of Lublin University of Technology - Regional Excellence Initiative, funded by the POLISH MINISTRY OF SCIENCE AND HIGHER EDUCATION
PubMed
31936413
PubMed Central
PMC7013851
DOI
10.3390/ma13020291
PII: ma13020291
Knihovny.cz E-resources
- Keywords
- SEM, epoxy resins, fillers, modification,
- Publication type
- Journal Article MeSH
This article presents the initial test results examining basic technological factors, such as type of modifying agent and seasoning time, which influence properties of adhesive epoxide compositions. The aim of the study was to prepare adhesive compositions with 2% content of the selected natural fillers (montmorillonite NanoBent ZR-2, ground chalk (powder)-CaCO3, and activated carbon powder C) and to examine their strength properties. A polymeric matrix used to prepare an adhesive composition consisted of the epoxide resins used in industry: Epidian 5 and Epidian 53 cured by addition of an aminomethyl group, where curing occurred through the Mannich reaction. A composition of epoxide resins with a curing agent and without any modifying agents was used as reference. The examinations described in the present article aimed to show the significance of the impact of the fillers used on the strength properties of the examined compositions. A fracture surface of epoxide adhesive compositions modified with the selected fillers was tested by means of a scanning electron microscope.
See more in PubMed
Baker A.A., Rose L.R.F., Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structure. 1st ed. Elsevier; Amsterdam, The Netherlands: 2002.
Khalili S.M.R., Jafarkarimi M.H., Abdollahi M.A. Creep analysis of fibre reinforced adhesives in single lap joints—Experimental study. Int. J. Adhes. Adhes. 2009;29:656–661. doi: 10.1016/j.ijadhadh.2009.02.007. DOI
Levchik S.V., Weil E.D. Flame retardancy of thermoplastic polyesters? A review of the recent literature. Polym. Int. 2005;54:11–35. doi: 10.1002/pi.1663. DOI
T’Joen C., Park Y., Wang Q., Sommers A., Han X., Jacobi A. A review on polymer heat exchangers for HVAC&R applications. Int. J. Refrig. 2009;32:763–779.
Kinloch I.A., Suhr J., Lou J., Young R.J., Ajayan P.M. Composites with carbon nanotubes and graphene: An outlook. Science. 2018;362:547–553. doi: 10.1126/science.aat7439. PubMed DOI
Abdullayev E., Abbasov V., Tursunbayeva A., Portnov V., Ibrahimov H., Mukhtarova G., Lvov Y. Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys. ACS Appl. Mater. Interfaces. 2013;5:4464–4471. doi: 10.1021/am400936m. PubMed DOI
Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI
Al-Hussaini A.S. Modified Nonconventional Synthesis of New Terpoly (Aniline, o-Anthranilic Acid and o-Phenylenediamine)/Bentonite Composites. Polym. Plast. Technol. Eng. 2015;54:61–67. doi: 10.1080/03602559.2014.935415. DOI
Gupta N., Lin T.C., Shapiro M. Clay-epoxy nanocomposites: Processing and properties. JOM. 2007;59:61–65. doi: 10.1007/s11837-007-0041-4. DOI
Ollier R., Rodriguez E., Alvarez V. Unsaturated polyester/bentonite nanocomposites: Influence of clay modification on final performance. Compos. Part. A: Appl. Sci. Manuf. 2013;48:137–143. doi: 10.1016/j.compositesa.2013.01.005. DOI
Rudawska A. Operacje specjalne w technologii klejenia blach ocenkowanych. Technol. I Autom. Montażu. 2007:100–103.
Adams R.D., Comyn J., Wake W.C. Structural Adhesive Joints in Engineering. 2nd ed. Chapman & Hall; London, UK: 1997.
Ebnesajjad S. Adhesives Technology Handbook. 2nd ed. William Andrew Pub; Norwich, NY, USA: 2008.
Ramos V.D., da Costa H.M., Soares V.L.P., Nascimento R.S.V. Modification of epoxy resin: A comparison of different types of elastomer. Polym. Test. 2005;24:387–394. doi: 10.1016/j.polymertesting.2004.09.010. DOI
VanderWeele T.J., Robins J.M. Four Types of Effect Modification: A Classification Based on Directed Acyclic Graphs. Epidemiology. 2007;18:561–568. doi: 10.1097/EDE.0b013e318127181b. PubMed DOI
Ciecierska E., Boczkowska A., Kubis M., Chabera P. Wisniewski T Epoxy composites with carbon fillers. Structure and properties. Przem. Chem. 2015;94:2033–2037.
Wang K., Chen L., Wu J., Toh M.L., He C., Yee A.F. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules. 2005;38:788–800. doi: 10.1021/ma048465n. DOI
Mays G., Hutchinson A.R. Adhesives in Civil Engineering. Cambridge University Press; Cambridge, UK: 1992.
Chawla K.K. Composite Materials: Science and Engineering. 3rd ed. Springer Science+Business Media; New York, NY, USA: 2012.
Ellis B. Chemistry and Technology of Epoxy Resins. Springer; Berlin/Heidelberg, Germany: 1993.
Koo J.H. Polymer Nanocomposites. Mcgraw-Hill Professional Pub; New York, NY, USA: 2006.
Strong A.B. Plastics: Materials and Processing. 3rd ed. Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2006.
Wang Q., Yang Z., Yang Y., Long C., Li H. A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci. Total Environ. 2014;473–474 doi: 10.1016/j.scitotenv.2013.12.066. PubMed DOI
Yoon I.-N., Lee Y., Kang D., Min J., Won J., Kim M., Soo Kang Y., Kim S., Kim J.-J. Modification of hydrogenated Bisphenol A epoxy adhesives using nanomaterials. Int. J. Adhes. Adhes. 2011;31:119–125. doi: 10.1016/j.ijadhadh.2010.11.010. DOI
Rudawska A., Czarnota M. Selected aspects of epoxy adhesive compositions curing process. J. Adhes. Sci. Technol. 2013;27:1933–1950. doi: 10.1080/01694243.2013.766558. DOI
Khashaba U.A., Aljinaidi A.A., Hamed M.A. Fatigue and Reliability Analysis of Nano-Modified Scarf Adhesive Joints in Carbon Fiber Composites. Compos. Part B Eng. 2017;120:103–117. doi: 10.1016/j.compositesb.2017.04.001. DOI
Wichmann M.H.G., Sumfleth J., Gojny F.H., Quaresimin M., Fiedler B., Schulte K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties-Benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 2006;73:2346–2359. doi: 10.1016/j.engfracmech.2006.05.015. DOI
Rudawska A., Stančeková D., Cubonova N., Vitenko T., Müller M., Valášek P. Adhesive properties and adhesive joints strength of graphite/epoxy composites. J. Phys. Conf. Ser. 2017;842:012073. doi: 10.1088/1742-6596/842/1/012073. DOI
Yokoyama T., Nakai K. Determination of the impact tensile strength of structural adhesive butt joints with a modified split Hopkinson pressure bar. Int. J. Adhes. Adhes. 2015;56:13–23. doi: 10.1016/j.ijadhadh.2014.07.011. DOI
Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
da Silva L.F.M., Carbas R.J.C., Critchlow G.W., Figueiredo M.A.V., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI
El-Tantawy F., Kamada K., Ohnabe H. In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 2002;56:112–126. doi: 10.1016/S0167-577X(02)00401-9. DOI
He H., Li K., Wang J., Sun G., Li Y., Wang J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater. Des. 2011;32:4521–4527. doi: 10.1016/j.matdes.2011.03.026. DOI
Rohlmann C.O., Horst M.F., Quinzani L.M., Failla M.D. Comparative analysis of nanocomposites based on polypropylene and different montmorillonites. Eur. Polym. J. 2008;44:2749–2760. doi: 10.1016/j.eurpolymj.2008.07.006. DOI
Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J.R. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim. Acta. 2007;454:1–22. doi: 10.1016/j.tca.2006.11.003. DOI
Zebarjad S.M., Sajjadi S.A. On the strain rate sensitivity of HDPE/CaCO3 nanocomposites. Mater. Sci. Eng. A. 2008;475:365–367. doi: 10.1016/j.msea.2007.05.008. DOI
Jin F.-L., Park S.-J. Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Mater. Sci. Eng. A. 2008;475:190–193. doi: 10.1016/j.msea.2007.04.046. DOI
Park S.-J. Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate. Bull. Korean Chem. Soc. 2009;30:334–338.
Chen S., Feng J. Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: Mechanical and thermal properties. Compos. Sci. Technol. 2014;101:145–151. doi: 10.1016/j.compscitech.2014.07.003. DOI
Ray B.C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interface Sci. 2006;298:111–117. doi: 10.1016/j.jcis.2005.12.023. PubMed DOI
Sawicz K., Ortyl J., Popielarz R. Applicability of 7-hydroxy-4-methylcoumarin for cure monitoring and marking of epoxy resins. Polimery. 2010;55:539–544. doi: 10.14314/polimery.2010.539. DOI
BN-73 6376-01-Industry Standard Epoxy Resins Epidian 51 i 53. [(accessed on 7 January 2020)]; Available online: http://bc.pollub.pl/dlibra/doccontent?id=5437&from=FBC.
BN-89 6376-02-Industry Standard Epoxy Resins Epidian 1, 2, 3, 4, 5, 6. [(accessed on 7 January 2020)]; Available online: http://bc.pollub.pl/dlibra/doccontent?id=5438.
[(accessed on 7 January 2020)]; Available online: http://www.krisko.lublin.pl/chemia/zywice-epoksydowe-posadzkowe-wylewki-epoksydowe/utwardzacze-do-zywic-epoksydowych/utwardzacz-tff/utwardzacz-tff-v-1-kg.html.
[(accessed on 7 January 2020)]; Available online: https://www.zebiec.pl/mineraly/bentonit/
[(accessed on 7 January 2020)]; Available online: https://sklep.pkn.pl/pn-en-iso-3167-2014-09e.html.
[(accessed on 7 January 2020)]; Available online: https://sklep.pkn.pl/pn-en-iso-527-1-2012p.html.
Müller M., Valášek P., Kolář V., Šleger V., Gürdil G.A.K., Hromasová M., Hloch S., Moravec J., Pexa M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2016;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI
Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.
Müller M. Ageing and durability process guaranteed by producer to adhesive bonds evaluation. Manuf. Technol. 2011;16:23–28.
Balkova R., Holcnerova S., Cech V. Testing of adhesives for bonding of polymer composites. Int. J. Adhes. Adhes. 2002;22:291–295. doi: 10.1016/S0143-7496(02)00006-4. DOI
Feng C.-W., Keong C.-W., Hsueh Y.-P., Wang Y.-Y., Sue H.-J. Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 2005;25:427–436. doi: 10.1016/j.ijadhadh.2004.11.009. DOI
Packham D.E., Johnston C. Mechanical adhesion: Were McBain and Hopkins right? An empirical study. Int. J. Adhes. Adhes. 1994;14:131–135. doi: 10.1016/0143-7496(94)90008-6. DOI
Davis M., Bond D. Principles and practices of adhesive bonded structural joints and repairs. Int. J. Adhes. Adhes. 1999;19:91–105. doi: 10.1016/S0143-7496(98)00026-8. DOI
Gledhill R.A., Kinloch A.J. Environmental Failure of Structural Adhesive Joints. J. Adhes. 1974;6:315–330. doi: 10.1080/00218467408075035. DOI
Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 2009;30:3931–3934. doi: 10.1016/j.matdes.2009.01.035. DOI
Herrera-Franco P.J., Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part. B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Alkbir M.F.M., Sapuan S.M., Nuraini A.A., Ishak M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI
Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction
Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler