• This record comes from PubMed

The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time

. 2020 Jan 08 ; 13 (2) : . [epub] 20200108

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
030/RID/2018/19 The project Lublin University of Technology - Regional Excellence Initiative, funded by the POLISH MINISTRY OF SCIENCE AND HIGHER EDUCATION
030/RID/2018/19 The project of Lublin University of Technology - Regional Excellence Initiative, funded by the POLISH MINISTRY OF SCIENCE AND HIGHER EDUCATION

This article presents the initial test results examining basic technological factors, such as type of modifying agent and seasoning time, which influence properties of adhesive epoxide compositions. The aim of the study was to prepare adhesive compositions with 2% content of the selected natural fillers (montmorillonite NanoBent ZR-2, ground chalk (powder)-CaCO3, and activated carbon powder C) and to examine their strength properties. A polymeric matrix used to prepare an adhesive composition consisted of the epoxide resins used in industry: Epidian 5 and Epidian 53 cured by addition of an aminomethyl group, where curing occurred through the Mannich reaction. A composition of epoxide resins with a curing agent and without any modifying agents was used as reference. The examinations described in the present article aimed to show the significance of the impact of the fillers used on the strength properties of the examined compositions. A fracture surface of epoxide adhesive compositions modified with the selected fillers was tested by means of a scanning electron microscope.

See more in PubMed

Baker A.A., Rose L.R.F., Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structure. 1st ed. Elsevier; Amsterdam, The Netherlands: 2002.

Khalili S.M.R., Jafarkarimi M.H., Abdollahi M.A. Creep analysis of fibre reinforced adhesives in single lap joints—Experimental study. Int. J. Adhes. Adhes. 2009;29:656–661. doi: 10.1016/j.ijadhadh.2009.02.007. DOI

Levchik S.V., Weil E.D. Flame retardancy of thermoplastic polyesters? A review of the recent literature. Polym. Int. 2005;54:11–35. doi: 10.1002/pi.1663. DOI

T’Joen C., Park Y., Wang Q., Sommers A., Han X., Jacobi A. A review on polymer heat exchangers for HVAC&R applications. Int. J. Refrig. 2009;32:763–779.

Kinloch I.A., Suhr J., Lou J., Young R.J., Ajayan P.M. Composites with carbon nanotubes and graphene: An outlook. Science. 2018;362:547–553. doi: 10.1126/science.aat7439. PubMed DOI

Abdullayev E., Abbasov V., Tursunbayeva A., Portnov V., Ibrahimov H., Mukhtarova G., Lvov Y. Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys. ACS Appl. Mater. Interfaces. 2013;5:4464–4471. doi: 10.1021/am400936m. PubMed DOI

Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI

Al-Hussaini A.S. Modified Nonconventional Synthesis of New Terpoly (Aniline, o-Anthranilic Acid and o-Phenylenediamine)/Bentonite Composites. Polym. Plast. Technol. Eng. 2015;54:61–67. doi: 10.1080/03602559.2014.935415. DOI

Gupta N., Lin T.C., Shapiro M. Clay-epoxy nanocomposites: Processing and properties. JOM. 2007;59:61–65. doi: 10.1007/s11837-007-0041-4. DOI

Ollier R., Rodriguez E., Alvarez V. Unsaturated polyester/bentonite nanocomposites: Influence of clay modification on final performance. Compos. Part. A: Appl. Sci. Manuf. 2013;48:137–143. doi: 10.1016/j.compositesa.2013.01.005. DOI

Rudawska A. Operacje specjalne w technologii klejenia blach ocenkowanych. Technol. I Autom. Montażu. 2007:100–103.

Adams R.D., Comyn J., Wake W.C. Structural Adhesive Joints in Engineering. 2nd ed. Chapman & Hall; London, UK: 1997.

Ebnesajjad S. Adhesives Technology Handbook. 2nd ed. William Andrew Pub; Norwich, NY, USA: 2008.

Ramos V.D., da Costa H.M., Soares V.L.P., Nascimento R.S.V. Modification of epoxy resin: A comparison of different types of elastomer. Polym. Test. 2005;24:387–394. doi: 10.1016/j.polymertesting.2004.09.010. DOI

VanderWeele T.J., Robins J.M. Four Types of Effect Modification: A Classification Based on Directed Acyclic Graphs. Epidemiology. 2007;18:561–568. doi: 10.1097/EDE.0b013e318127181b. PubMed DOI

Ciecierska E., Boczkowska A., Kubis M., Chabera P. Wisniewski T Epoxy composites with carbon fillers. Structure and properties. Przem. Chem. 2015;94:2033–2037.

Wang K., Chen L., Wu J., Toh M.L., He C., Yee A.F. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules. 2005;38:788–800. doi: 10.1021/ma048465n. DOI

Mays G., Hutchinson A.R. Adhesives in Civil Engineering. Cambridge University Press; Cambridge, UK: 1992.

Chawla K.K. Composite Materials: Science and Engineering. 3rd ed. Springer Science+Business Media; New York, NY, USA: 2012.

Ellis B. Chemistry and Technology of Epoxy Resins. Springer; Berlin/Heidelberg, Germany: 1993.

Koo J.H. Polymer Nanocomposites. Mcgraw-Hill Professional Pub; New York, NY, USA: 2006.

Strong A.B. Plastics: Materials and Processing. 3rd ed. Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2006.

Wang Q., Yang Z., Yang Y., Long C., Li H. A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci. Total Environ. 2014;473–474 doi: 10.1016/j.scitotenv.2013.12.066. PubMed DOI

Yoon I.-N., Lee Y., Kang D., Min J., Won J., Kim M., Soo Kang Y., Kim S., Kim J.-J. Modification of hydrogenated Bisphenol A epoxy adhesives using nanomaterials. Int. J. Adhes. Adhes. 2011;31:119–125. doi: 10.1016/j.ijadhadh.2010.11.010. DOI

Rudawska A., Czarnota M. Selected aspects of epoxy adhesive compositions curing process. J. Adhes. Sci. Technol. 2013;27:1933–1950. doi: 10.1080/01694243.2013.766558. DOI

Khashaba U.A., Aljinaidi A.A., Hamed M.A. Fatigue and Reliability Analysis of Nano-Modified Scarf Adhesive Joints in Carbon Fiber Composites. Compos. Part B Eng. 2017;120:103–117. doi: 10.1016/j.compositesb.2017.04.001. DOI

Wichmann M.H.G., Sumfleth J., Gojny F.H., Quaresimin M., Fiedler B., Schulte K. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties-Benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 2006;73:2346–2359. doi: 10.1016/j.engfracmech.2006.05.015. DOI

Rudawska A., Stančeková D., Cubonova N., Vitenko T., Müller M., Valášek P. Adhesive properties and adhesive joints strength of graphite/epoxy composites. J. Phys. Conf. Ser. 2017;842:012073. doi: 10.1088/1742-6596/842/1/012073. DOI

Yokoyama T., Nakai K. Determination of the impact tensile strength of structural adhesive butt joints with a modified split Hopkinson pressure bar. Int. J. Adhes. Adhes. 2015;56:13–23. doi: 10.1016/j.ijadhadh.2014.07.011. DOI

Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

da Silva L.F.M., Carbas R.J.C., Critchlow G.W., Figueiredo M.A.V., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI

El-Tantawy F., Kamada K., Ohnabe H. In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 2002;56:112–126. doi: 10.1016/S0167-577X(02)00401-9. DOI

He H., Li K., Wang J., Sun G., Li Y., Wang J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater. Des. 2011;32:4521–4527. doi: 10.1016/j.matdes.2011.03.026. DOI

Rohlmann C.O., Horst M.F., Quinzani L.M., Failla M.D. Comparative analysis of nanocomposites based on polypropylene and different montmorillonites. Eur. Polym. J. 2008;44:2749–2760. doi: 10.1016/j.eurpolymj.2008.07.006. DOI

Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J.R. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim. Acta. 2007;454:1–22. doi: 10.1016/j.tca.2006.11.003. DOI

Zebarjad S.M., Sajjadi S.A. On the strain rate sensitivity of HDPE/CaCO3 nanocomposites. Mater. Sci. Eng. A. 2008;475:365–367. doi: 10.1016/j.msea.2007.05.008. DOI

Jin F.-L., Park S.-J. Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites. Mater. Sci. Eng. A. 2008;475:190–193. doi: 10.1016/j.msea.2007.04.046. DOI

Park S.-J. Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate. Bull. Korean Chem. Soc. 2009;30:334–338.

Chen S., Feng J. Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: Mechanical and thermal properties. Compos. Sci. Technol. 2014;101:145–151. doi: 10.1016/j.compscitech.2014.07.003. DOI

Ray B.C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid Interface Sci. 2006;298:111–117. doi: 10.1016/j.jcis.2005.12.023. PubMed DOI

Sawicz K., Ortyl J., Popielarz R. Applicability of 7-hydroxy-4-methylcoumarin for cure monitoring and marking of epoxy resins. Polimery. 2010;55:539–544. doi: 10.14314/polimery.2010.539. DOI

BN-73 6376-01-Industry Standard Epoxy Resins Epidian 51 i 53. [(accessed on 7 January 2020)]; Available online: http://bc.pollub.pl/dlibra/doccontent?id=5437&from=FBC.

BN-89 6376-02-Industry Standard Epoxy Resins Epidian 1, 2, 3, 4, 5, 6. [(accessed on 7 January 2020)]; Available online: http://bc.pollub.pl/dlibra/doccontent?id=5438.

[(accessed on 7 January 2020)]; Available online: http://www.krisko.lublin.pl/chemia/zywice-epoksydowe-posadzkowe-wylewki-epoksydowe/utwardzacze-do-zywic-epoksydowych/utwardzacz-tff/utwardzacz-tff-v-1-kg.html.

[(accessed on 7 January 2020)]; Available online: https://www.zebiec.pl/mineraly/bentonit/

[(accessed on 7 January 2020)]; Available online: https://sklep.pkn.pl/pn-en-iso-3167-2014-09e.html.

[(accessed on 7 January 2020)]; Available online: https://sklep.pkn.pl/pn-en-iso-527-1-2012p.html.

Müller M., Valášek P., Kolář V., Šleger V., Gürdil G.A.K., Hromasová M., Hloch S., Moravec J., Pexa M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC

Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2016;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI

Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.

Müller M. Ageing and durability process guaranteed by producer to adhesive bonds evaluation. Manuf. Technol. 2011;16:23–28.

Balkova R., Holcnerova S., Cech V. Testing of adhesives for bonding of polymer composites. Int. J. Adhes. Adhes. 2002;22:291–295. doi: 10.1016/S0143-7496(02)00006-4. DOI

Feng C.-W., Keong C.-W., Hsueh Y.-P., Wang Y.-Y., Sue H.-J. Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 2005;25:427–436. doi: 10.1016/j.ijadhadh.2004.11.009. DOI

Packham D.E., Johnston C. Mechanical adhesion: Were McBain and Hopkins right? An empirical study. Int. J. Adhes. Adhes. 1994;14:131–135. doi: 10.1016/0143-7496(94)90008-6. DOI

Davis M., Bond D. Principles and practices of adhesive bonded structural joints and repairs. Int. J. Adhes. Adhes. 1999;19:91–105. doi: 10.1016/S0143-7496(98)00026-8. DOI

Gledhill R.A., Kinloch A.J. Environmental Failure of Structural Adhesive Joints. J. Adhes. 1974;6:315–330. doi: 10.1080/00218467408075035. DOI

Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 2009;30:3931–3934. doi: 10.1016/j.matdes.2009.01.035. DOI

Herrera-Franco P.J., Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part. B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI

Alkbir M.F.M., Sapuan S.M., Nuraini A.A., Ishak M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Analysis of Acoustic Absorption Coefficients and Characterization of Epoxy Adhesive Compositions Based on the Reaction Product of Bisphenol A with Epichlorohydrin Modified with Fillers

. 2024 Sep 10 ; 17 (18) : . [epub] 20240910

Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading

. 2023 Jan 12 ; 15 (2) : . [epub] 20230112

Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction

. 2022 Jun 03 ; 14 (11) : . [epub] 20220603

Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler

. 2022 Mar 23 ; 14 (7) : . [epub] 20220323

Experimental Investigation of Wavy-Lap Bonds with Natural Cotton Fabric Reinforcement under Cyclic Loading

. 2021 Aug 26 ; 13 (17) : . [epub] 20210826

The Influence of Mixing Methods of Epoxy Composition Ingredients on Selected Mechanical Properties of Modified Epoxy Construction Materials

. 2021 Jan 15 ; 14 (2) : . [epub] 20210115

Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles

. 2020 Jun 22 ; 12 (6) : . [epub] 20200622

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...