Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/18_053/0016979
Czech Operational Programme Research, Development and Education: Supporting the development of international mobility research, technical and administrative staff of the CZU in Prague - phase II
PubMed
36679275
PubMed Central
PMC9865343
DOI
10.3390/polym15020395
PII: polym15020395
Knihovny.cz E-zdroje
- Klíčová slova
- NaOH treatment, material utilization, natural filler, oilseed cake, single-lap bond,
- Publikační typ
- časopisecké články MeSH
The aim of this research was to evaluate the effect of untreated and 5% aqueous NaOH solution-treated filler of the plant Jatropha Curcas L. on the mechanical properties of adhesive bonds, especially in terms of their service life at different amplitudes of cyclic loading. As a result of the presence of phorbol ester, which is toxic, Jatropha oilseed cake cannot be used as livestock feed. The secondary aim was to find other possibilities for the utilization of natural waste materials. Another use is as a filler in polymer composites, that is, in composite adhesive layers. The cyclic loading of the adhesive bonds was carried out for 1000 cycles in two amplitudes, that is, 5-30% of the maximum force and 5-50% of the maximum force, which was obtained by the static tensile testing of the adhesive bonds with unmodified filler. The static tensile test showed an increase in the shear strength of the adhesive bonds with alkali-treated filler compared to the untreated filler by 3-41%. The cyclic test results did not show a statistically significant effect of the alkaline treatment of the filler surface on the service life of the adhesive bonds. Positive changes in the strain value between adhesive bonds with treated and untreated filler were demonstrated at cyclic stress amplitudes of 5-50%. SEM analysis showed the presence of interlayer defects in the layers of the tested materials, which are related to the oil-based filler used.
Zobrazit více v PubMed
Banea M.D., Rosioara M., Carbas R.J.C., da Silva L.F.M. Multi-Material Adhesive Joints for Automotive Industry. Compos. Part B Eng. 2018;151:71–77. doi: 10.1016/j.compositesb.2018.06.009. DOI
Da Silva L.F.M., Adams R.D. Techniques to Reduce the Peel Stresses in Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2007;27:227–235. doi: 10.1016/j.ijadhadh.2006.04.001. DOI
Duong C.N. A General Approach to Fracture Analysis of Tapered Bonded Joints and Doublers. Eng. Fract. Mech. 2012;96:355–379. doi: 10.1016/j.engfracmech.2012.08.013. DOI
Petrie E.M. Handbook of Adhesives and Sealants. 2nd ed. McGraw-Hill; New York, NY, USA: 2007.
Jeevi G., Nayak S.K., Abdul Kader M. Review on Adhesive Joints and Their Application in Hybrid Composite Structures. J. Adhes. Sci. Technol. 2019;33:1497–1520. doi: 10.1080/01694243.2018.1543528. DOI
Adams R. Adhesive Bonding: Science, Technology and Applications. Woodhead Publishing; Cambridge, UK: 2005.
Pizzi A., Mittal K. Handbook of Adhesive Technology. CRS Press Taylor & Francis Group; Boca Raton, FL, USA: 2003.
Agyemang N.S., Antwi K. Variations in Oil Content and Biodiesel Yield of Jatropha Curcas from Different Agro-Ecological Zones of Ghana. Int. J. Renew. Sustain. Energy. 2014;3:76–81. doi: 10.11648/J.IJRSE.20140304.11. DOI
Ong H.C., Silitonga A.S., Masjuki H.H., Mahlia T.M.I., Chong W.T., Boosroh M.H. Production and Comparative Fuel Properties of Biodiesel from Non-Edible Oils: Jatropha Curcas, Sterculia Foetida and Ceiba Pentandra. Energy Convers. Manag. 2013;73:245–255. doi: 10.1016/j.enconman.2013.04.011. DOI
Kabutey A., Herák D., Chotěborský R., Sigalingging R., Mizera Č. Effect of Compression Speed on Energy Requirement and Oil Yield of Jatropha Curcas L. Bulk Seeds under Linear Compression. Biosyst. Eng. 2015;136:8–13. doi: 10.1016/j.biosystemseng.2015.05.003. DOI
Abdelgadir H.A., van Staden J. Ethnobotany, Ethnopharmacology and Toxicity of Jatropha Curcas L. (Euphorbiaceae): A Review. S. Afr. J. Bot. 2013;88:204–218. doi: 10.1016/j.sajb.2013.07.021. DOI
Alherbawi M., McKay G., Mackey H.R., Al-Ansari T. Jatropha Curcas for Jet Biofuel Production: Current Status and Future Prospects. Renew. Sustain. Energy Rev. 2021;135:110396. doi: 10.1016/j.rser.2020.110396. DOI
Deeba F., Kumar V., Gautam K., Saxena R.K., Sharma D.K. Bioprocessing of Jatropha Curcas Seed Oil and Deoiled Seed Hulls for the Production of Biodiesel and Biogas. Biomass Bioenergy. 2012;40:13–18. doi: 10.1016/j.biombioe.2012.01.009. DOI
Serrapica F., Masucci F., Raffrenato E., Sannino M., Vastolo A., Barone C.M.A., Di Francia A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals. 2019;9:918. doi: 10.3390/ani9110918. PubMed DOI PMC
Singh R., Langyan S., Sangwan S., Rohtagi B., Khandelwal A., Shrivastava M. Protein for Human Consumption From Oilseed Cakes: A Review. Front. Sustain. Food Syst. 2022;6:101. doi: 10.3389/fsufs.2022.856401. DOI
Goel G., Makkar H.P.S., Francis G., Becker K. Phorbol Esters: Structure, Biological Activity, and Toxicity in Animals. Int. J. Toxicol. 2007;26:279–288. doi: 10.1080/10915810701464641. PubMed DOI
Ramírez V., Martí-Herrero J., Romero M., Rivadeneira D. Energy Use of Jatropha Oil Extraction Wastes: Pellets from Biochar and Jatropha Shell Blends. J. Clean. Prod. 2019;215:1095–1102. doi: 10.1016/j.jclepro.2019.01.132. DOI
Shivamurthy B., Murthy K., Joseph P.C., Rishi K., Bhat K.U., Anandhan S. Mechanical Properties and Sliding Wear Behavior of Jatropha Seed Cake Waste/Epoxy Composites. J. Mater. Cycles Waste Manag. 2015;17:144–156. doi: 10.1007/s10163-014-0235-0. DOI
Valášek P. Mechanical Properties of Polymer Composites Based on Bioparticles (Jatropha Curcas L.) J. Teknol. 2015;76:1–5. doi: 10.11113/jt.v76.5500. DOI
Hrabě P., Müller M. Three-Body Abrasive Wear of Polymer Matrix Composites Filled with Jatropha Curcas L. Procedia Eng. 2016;136:169–174. doi: 10.1016/j.proeng.2016.01.192. DOI
Das O., Babu K., Shanmugam V., Sykam K., Tebyetekerwa M., Neisiany R.E., Försth M., Sas G., Gonzalez-Libreros J., Capezza A.J., et al. Natural and Industrial Wastes for Sustainable and Renewable Polymer Composites. Renew. Sustain. Energy Rev. 2022;158:112054. doi: 10.1016/j.rser.2021.112054. DOI
Bourmaud A., Beaugrand J., Shah D.U., Placet V., Baley C. Towards the Design of High-Performance Plant Fibre Composites. Prog. Mater. Sci. 2018;97:347–408. doi: 10.1016/j.pmatsci.2018.05.005. DOI
Vijaya Ramnath B., Jeykrishnan J., Ramakrishnan G., Barath B., Ejoelavendhan E., Arun Raghav P. Sea Shells and Natural Fibres Composites: A Review. Mater. Today Proc. 2018;5:1846–1851. doi: 10.1016/j.matpr.2017.11.284. DOI
Iyer K.A., Torkelson J.M. Green Composites of Polypropylene and Eggshell: Effective Biofiller Size Reduction and Dispersion by Single-Step Processing with Solid-State Shear Pulverization. Compos. Sci. Technol. 2014;102:152–160. doi: 10.1016/j.compscitech.2014.07.029. DOI
Sienkiewicz N., Dominic M., Parameswaranpillai J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers. 2022;14:265. doi: 10.3390/polym14020265. PubMed DOI PMC
Umar K., Yaqoob A.A., Ibrahim M.N.M., Parveen T., Safian M.T.U. Smart Polymer Nanocomposites: Biomedical and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. Environmental Applications of Smart Polymer Composites; pp. 295–312.
Yan L., Kasal B., Huang L. A Review of Recent Research on the Use of Cellulosic Fibres, Their Fibre Fabric Reinforced Cementitious, Geo-Polymer and Polymer Composites in Civil Engineering. Compos. Part B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI
Arumugaprabu V., Johnson R.D.J., Vigneshwaran S. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer; Cham, Switzerland: 2020. Mechanical Performance of Nanocomposites and Biomass-Based Composite Materials and Its Applications: An Overview; pp. 1–14.
Herrera-Franco P., Valadez A. A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Alkbir M., Sapuan M.S., Nuraini A., Ishak M. Fibre Properties and Crashworthiness Parameters of Natural Fibre-Reinforced Composite Structure: A Literature Review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI
Aziz S., Ansell M. The Effect of Alkalization and Fibre Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bast Fibre Composites: Part 1—Polyester Resin Matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI
Dalmay P., Smith A., Chotard T., Sahay-Turner P., Gloaguen V., Krausz P. Properties of Cellulosic Fibre Reinforced Plaster: Influence of Hemp or Flax Fibres on the Properties of Set Gypsum. J. Mater. Sci. 2010;45:793–803. doi: 10.1007/s10853-009-4002-x. DOI
Petrásek S., Müller M. Mechanical Qualities of Adhesive Bonds Reinforced with Biological Fabric Treated by Plasma. Agron. Res. 2017;15:1170–1181.
Valášek P., Müller M., Šleger V., Kolář V., Hromasová M., D’amato R., Ruggiero A. Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials. 2021;14:2636. doi: 10.3390/ma14102636. PubMed DOI PMC
Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P. Effect of Fiber Surface Treatment on the Fiber-Matrix Bond Strength of Natural Fiber Reinforced Composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI
Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface Micro-Dissolve Method of Imparting Self-Cleaning Property to Cotton Fabrics in NaOH/Urea Aqueous Solution. Appl. Surf. Sci. 2017;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI
Yaqoob A.A., Safian M.T.U., Rashid M., Tabassum P., Umar K., Ibrahim M.N.M. Smart Polymer Nanocomposites: Biomedical and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. Introduction of Smart Polymer Nanocomposites; pp. 1–25.
Da Silva L.F.M., Öchsner A., Adams R.D. Handbook of Adhesion Technology. Springer; Berlin/Heidelberg, Germany: 2011.
Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repair. Prog. Mater. Sci. 2016;83:536–573. doi: 10.1016/j.pmatsci.2016.07.007. DOI
Chen Y., Smith L.V. Ratcheting and Recovery of Adhesively Bonded Joints under Tensile Cyclic Loading. Mech. Time-Dependent Mater. 2021:1–20. doi: 10.1007/s11043-019-09432-1. DOI
Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial Ratchetting and Low-Cycle Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints under Cyclic Tension Deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI
Saraç İ., Adin H., Temiz Ş. A Research on the Fatigue Strength of the Single-Lap Joint Joints Bonded with Nanoparticle-Reinforced Adhesive. Weld. World. 2021;65:635–642. doi: 10.1007/s40194-020-01063-2. DOI
Chu C.W., Zhang Y., Obayashi K., Kojio K., Takahara A. Single-Lap Joints Bonded with Epoxy Nanocomposite Adhesives: Effect of Organoclay Reinforcement on Adhesion and Fatigue Behaviors. ACS Appl. Polym. Mater. 2021;3:3428–3437. doi: 10.1021/acsapm.1c00347. DOI
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Hrabě P., Kolář V., Müller M., Hromasová M. Service Life of Adhesive Bonds under Cyclic Loading with a Filler Based on Natural Waste from Coconut Oil Production. Polymers. 2022;14:1033. doi: 10.3390/polym14051033. PubMed DOI PMC
Müller M., Horníčková, Hrabě P., Mařík J. Analysis of Physical, Mechanical and Chemical Properties of Seeds and Kernels of Jatropha Curcas. Res. Agric. Eng. 2015;61:99–105. doi: 10.17221/10/2014-RAE. DOI
Niu L., Li J., Chen M.S., Xu Z.F. Determination of Oil Contents in Sacha Inchi (Plukenetia Volubilis) Seeds at Different Developmental Stages by Two Methods: Soxhlet Extraction and Time-Domain Nuclear Magnetic Resonance. Ind. Crops Prod. 2014;56:187–190. doi: 10.1016/j.indcrop.2014.03.007. DOI
Mizera Č., Herák D., Hrabě P., Saller T. Linear Pressing of Coconut Copra Meal (Cocos Nucifera L.) under Different Temperatures. Agron. Res. 2019;17:1132–1137. doi: 10.15159/AR.19.134. DOI
International Organization for Standardization . ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Czech Standardization Institute; Prague, Czech Republic: 2009.
Tichý M., Kolář V., Müller M., Mishra R.K., Šleger V., Hromasová M. Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer. Polymers. 2020;12:2945. doi: 10.3390/polym12122945. PubMed DOI PMC
DIN 17120 Grade St 37-3—Low Carbon Steel—Matmatch. [(accessed on 13 May 2021)]. Available online: https://matmatch.com/materials/minfm31305-din-17120-grade-st-37-3.
Grant L.D.R., Adams R.D., da Silva L.F.M. Experimental and Numerical Analysis of Single-Lap Joints for the Automotive Industry. Int. J. Adhes. Adhes. 2009;29:405–413. doi: 10.1016/j.ijadhadh.2008.09.001. DOI
Baskaran P.G., Kathiresan M., Pandiarajan P. Effect of Alkali-Treatment on Structural, Thermal, Tensile Properties of Dichrostachys Cinerea Bark Fiber and Its Composites. J. Nat. Fibers. 2022;19:433–449. doi: 10.1080/15440478.2020.1745123. DOI
Orue A., Eceiza A., Arbelaiz A. The Use of Alkali Treated Walnut Shells as Filler in Plasticized Poly(Lactic Acid) Matrix Composites. Ind. Crops Prod. 2020;145:111993. doi: 10.1016/j.indcrop.2019.111993. DOI
Valášek P., Müller M. Biocomposite Based on Epoxy Resin and Jatropha Curcas L. Microparticles. Adv. Mater. Res. 2014;1030–1032:446–449. doi: 10.4028/www.scientific.net/AMR.1030-1032.446. DOI
Broughton W.R., Mera R.D., Hinopoulos G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. National Physical Laboratory; Teddington, UK: 1999.
Guo Y., Yang C., Wang L., Xu F. Effects of Cyclic Loading on the Mechanical Properties of Mature Bedding Shale. Adv. Civ. Eng. 2018;2018:8985973. doi: 10.1155/2018/8985973. DOI
Broughton W.R., Mera R.D. Cyclic Fatigue Testing of Adhesive Joints Environmental Effects. National Physical Laboratory; Teddington, UK: 1999.
Müller M., Šleger V., Kolář V., Hromasová M., Piš D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC
Anand Chairman C., Jayasathyakawin S., Srinivasan D., Ravichandran M. Abrasive Wear Characteristics of Bio-Based Jatropha Oil Cake Incorporated Basalt Fiber Reinforced Epoxy Composites. Mater. Today Proc. 2020;33:3947–3950. doi: 10.1016/j.matpr.2020.06.276. DOI
Ruggiero A., Valášek P., Müller M., D’Amato R. Tribological Investigation of Epoxy/Seed Particle Composite Obtained from Residues of Processing Jatropha Curcas L. Fruits. Compos. Part B Eng. 2019;167:654–667. doi: 10.1016/j.compositesb.2019.03.041. DOI
Miturska I., Rudawska A., Müller M., Valášek P. The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time. Materials. 2020;13:291. doi: 10.3390/ma13020291. PubMed DOI PMC
Rudawska A., Abdel Wahab M., Müller M. Effect of Ageing Process on Mechanical Properties of Adhesive Tubular Butt Joints in Aqueous Environment. Int. J. Adhes. Adhes. 2020;96:102466. doi: 10.1016/j.ijadhadh.2019.102466. DOI
Hasanah U., Setiaji B., Triyono T., Anwar C. The Chemical Composition and Physical Properties of the Light and Heavy Tar Resulted from Coconut Shell Pyrolysis. J. Pure Appl. Chem. Res. 2012;1:26–32. doi: 10.21776/ub.jpacr.2012.001.01.102. DOI
Gao Y., Yang Y., Qin Z., Sun Y. Factors Affecting the Yield of Bio-Oil from the Pyrolysis of Coconut Shell. Springerplus. 2016;5:333. doi: 10.1186/s40064-016-1974-2. PubMed DOI PMC