Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2024:31140/1312/3102
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers"
2023:31140/1312/3104
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2023:31140/1312/3104: "Development and testing of polymer composite materials with natural reinforcement"
PubMed
39458690
PubMed Central
PMC11510883
DOI
10.3390/polym16202863
PII: polym16202863
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier transform infrared spectroscopy, cyclic fatigue, differential scanning calorimetry, dynamic mechanical analysis, injection molding technology, low-density polyethylene, mechanical properties, post-consumer waste, recycling, thermal degradation,
- Publikační typ
- časopisecké články MeSH
This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set up to 80% of the maximum load in static tensile testing demonstrated satisfactory functionality of the recycled material developed by using the injection molding process. There was no significant change in the tensile strength under static and cyclic fatigue tests. Under cyclic loading, there was a quasi-static effect manifested by plastic deformation, and the displacement increased significantly. The static and cyclic tensile tests indicated improvement in the mechanical performance of the recycled LDPE as compared to the virgin material, owing to the high quality of the regranulates. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to analyze the functional groups in virgin and recycled LDPE samples. The analysis showed no significant change in the transmittance spectra. The thermal degradation performance was also analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The results were quite similar for both virgin and recycled LDPE.
Zobrazit více v PubMed
Hundertmark T., Mayer M., McNally C., Simons T.J., Witte C. Recycling and the Future of the Plastics Industry|McKinsey. [(accessed on 17 January 2024)]. Available online: https://www.mckinsey.com/industries/chemicals/our-insights/how-plastics-waste-recycling-could-transform-the-chemical-industry.
Duque J.V.F., Martins M.F., Debenest G., Orlando M.T.D.A. The Influence of the Recycling Stress History on LDPE Waste Pyrolysis. Polym. Test. 2020;86:106460. doi: 10.1016/j.polymertesting.2020.106460. DOI
Techawinyutham L., Tengsuthiwat J., Srisuk R., Techawinyutham W., Mavinkere Rangappa S., Siengchin S. Recycled LDPE/PETG Blends and HDPE/PETG Blends: Mechanical, Thermal, and Rheological Properties. J. Mater. Res. Technol. 2021;15:2445–2458. doi: 10.1016/j.jmrt.2021.09.052. DOI
Müller M., Chotěborský R., Valášek P., Hloch S. Unusual Possibility of Wear Resistance Increase Research in the Sphere of Soil Cultivation. Teh. Vjesn. 2013;20:641–646.
Schulte A., Velarde P.Á.S., Marbach L., Mörbitz P. Measuring the Circularity Potential of Recycled LDPE Based on Quantity and Quality Conservation—A Functional Requirement Matrix Approach. Resour. Conserv. Recycl. Adv. 2023;17:200127. doi: 10.1016/j.rcradv.2022.200127. DOI
Mleziva J. Polymery—Výroba, Struktura, Vlastnosti a Použití. 2nd ed. Sobotáles; Praha, Czech Republic: 2000.
Přikrylová J. Bachelor’s Thesis. Tomas Bata University in Zlín; Zlín, Czech Republic: 2017. Aplikační Potenciál LDPE. LLDPE, HDPE a Jejich Směsí.
Bertin S., Robin J.J. Study and Characterization of Virgin and Recycled LDPE/PP Blends. Eur. Polym. J. 2002;38:2255–2264. doi: 10.1016/S0014-3057(02)00111-8. DOI
Núñez S.S., Conesa J.A., Moltó J., Fullana A. Decontamination of Recycled LDPE Using Different Washing Methods. Resour. Conserv. Recycl. 2023;195:107017. doi: 10.1016/j.resconrec.2023.107017. DOI
Gao P., Krantz J., Ferki O., Nieduzak Z., Perry S., Sobkowicz M.J., Masato D. Thermo-Mechanical Recycling via Ultrahigh-Speed Extrusion of Film-Grade Recycled LDPE and Injection Molding. Sustain. Mater. Technol. 2023;38:e00719. doi: 10.1016/j.susmat.2023.e00719. DOI
Moreno D.D.P., Hirayama D., Saron C. Accelerated Aging of Pine Wood Waste/Recycled LDPE Composite. Polym. Degrad. Stab. 2018;149:39–44. doi: 10.1016/j.polymdegradstab.2018.01.014. DOI
Gomes D.A.C., de Novais Miranda E.H., de Araújo Veloso M.C.R., da Silva M.G., Ferreira G.C., Mendes L.M., Júnior J.B.G. Production and Characterization of Recycled Low-Density Polyethylene/Amazon Palm Fiber Composites. Ind. Crop. Prod. 2023;201:116833. doi: 10.1016/j.indcrop.2023.116833. DOI
Kibirkštis E., Mayik V., Zatserkovna R., Vaitasius K., Stepanenko A., Kandrotaitė-Janutienė R., Venytė I., Danilovas P.P. Study of Physical and Mechanical Properties of Partially Biodegradable LDPE Polymeric Films and Their Application for Printing and Packaging. Polym. Test. 2022;112:107646. doi: 10.1016/j.polymertesting.2022.107646. DOI
Pedroso A.G., Rosa D.S. Mechanical, Thermal and Morphological Characterization of Recycled LDPE/Corn Starch Blends. Carbohydr. Polym. 2005;59:1–9. doi: 10.1016/j.carbpol.2004.08.018. DOI
Scott G. ‘Green’ Polymers. Polym. Degrad. Stab. 2000;68:1–7. doi: 10.1016/S0141-3910(99)00182-2. DOI
Conesa J.A., Nuñez S.S., Ortuño N., Moltó J. Pah and Pop Presence in Plastic Waste and Recyclates: State of the Art. Energies. 2021;14:3451. doi: 10.3390/en14123451. DOI
Santagata C., Iaquaniello G., Salladini A., Agostini E., Capocelli M., De Falco M. Production of Low-Density Poly-Ethylene (LDPE) from Chemical Recycling of Plastic Waste: Process Analysis. J. Clean. Prod. 2020;253:119837. doi: 10.1016/j.jclepro.2019.119837. DOI
Müller M., Rudawska A., Tichý M., Kolář V., Hromasová M. Research on Wear Resistance of Polymeric Composite Materials Based on Microparticles from Tyre Recyclation Process. Manuf. Technol. 2020;20:223–228. doi: 10.21062/mft.2020.031. DOI
Maris J., Bourdon S., Brossard J.M., Cauret L., Fontaine L., Montembault V. Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes. Polym. Degrad. Stab. 2018;147:245–266. doi: 10.1016/j.polymdegradstab.2017.11.001. DOI
Oblak P., Gonzalez-Gutierrez J., Zupančič B., Aulova A., Emri I. Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene. Polym. Degrad. Stab. 2015;114:133–145. doi: 10.1016/j.polymdegradstab.2015.01.012. DOI
Vera-Sorroche J., Kelly A., Brown E., Coates P., Karnachi N., Harkin-Jones E., Li K., Deng J. Thermal Optimisation of Polymer Extrusion Using In-Process Monitoring Techniques. Appl. Therm. Eng. 2013;53:405–413. doi: 10.1016/j.applthermaleng.2012.04.013. DOI
Gryn’ova G., Hodgson J.L., Coote M.L. Revising the Mechanism of Polymer Autooxidation. Org. Biomol. Chem. 2011;9:480–490. doi: 10.1039/C0OB00596G. PubMed DOI
Luzuriaga S., Kovářová J., Fortelný I. Degradation of Pre-Aged Polymers Exposed to Simulated Recycling: Properties and Thermal Stability. Polym. Degrad. Stab. 2006;91:1226–1232. doi: 10.1016/j.polymdegradstab.2005.09.004. DOI
Vilaplana F., Karlsson S. Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review. Macromol. Mater. Eng. 2008;293:274–297. doi: 10.1002/mame.200700393. DOI
Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repair. Prog. Mater. Sci. 2016;83:536–573. doi: 10.1016/j.pmatsci.2016.07.007. DOI
Barbosa S.E., Capiati N.J., Kenny J.M. Processability and Mechanical Properties of Ternary Composites PP/EPDM/GF. Polym. Compos. 2000;21:377–386. doi: 10.1002/pc.10196. DOI
Katz H.S., Milewski J. Handbook of Fillers and Reinforcements for Plastics. Van Nostrand Reinhold Co.; New York, NY, USA: 2003.
Zhang L., Liu Z., Wu D., Zhang H., Zhu P. Fast and Synergetic Fatigue Life Prediction of Short Fiber Reinforced Polymer Composites from Monotonic and Cyclic Loading Behavior. Compos. Sci. Technol. 2023;241:110121. doi: 10.1016/j.compscitech.2023.110121. DOI
Durjava A., Nagode M., Šeruga D. Applicability of Memory Rules during Cyclic Stress–Strain Response of Polymers PA6 and PA66 GF30. Mater. Today Commun. 2023;35:106342. doi: 10.1016/j.mtcomm.2023.106342. DOI
Baradaran S., Rahimi J., Ameri M., Maleki A. Mechanical Performance of Asphalt Mixture Containing Eco-Friendly Additive by Recycling PET. Case Stud. Constr. Mater. 2024;20:e02740. doi: 10.1016/j.cscm.2023.e02740. DOI
Saleh M., Anwar S., AlFaify A.Y., Al-Ahmari A.M., Abd Elgawad A.E.E. Development of PLA/Recycled-Desized Carbon Fiber Composites for 3D Printing: Thermal, Mechanical, and Morphological Analyses. J. Mater. Res. Technol. 2024;29:2768–2780. doi: 10.1016/j.jmrt.2024.01.267. DOI
Di L., Yang Y., Wang S. Additive Manufacturing Thermoplastic Recycling: Profit-Driven Planning and Optimization. J. Clean. Prod. 2024;436:140598. doi: 10.1016/j.jclepro.2024.140598. DOI
Plastics—Determination of Tensile Properties Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO; Geneva, Switzerland: 2012.
Kolář V., Hrabě P., Müller M., Hromasová M., Herák D., Sutanto H. Influence of Alkali Treatment of Jatropha curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading. Polymers. 2023;15:395. doi: 10.3390/polym15020395. PubMed DOI PMC
Ahmed T., Mamat O. The Development and Characteriza-tion of HDPE-silica Sand Nanoparticles Composites; Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering; Penang, Malaysia. 5–6 December 2011; pp. 6–11.
Alapati S., Meledath J.T., Karmarkar A. Effect of Morpholo-gy on Electrical Treeing in Low Density Polyethylene Nanocomposites. IET Sci. Meas. Technol. 2014;8:60–68. doi: 10.1049/iet-smt.2012.0032. DOI
Zaharescu T., Râpă M., Blanco I., Borbath T., Borbath I. Durability of LDPE/UHMWPE Composites under Accelerated Degradation. Polymers. 2020;12:1241. doi: 10.3390/polym12061241. PubMed DOI PMC
Li D., Zhou L., Wang X., He L., Yang X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials. 2019;12:1746. doi: 10.3390/ma12111746. PubMed DOI PMC
Moreno D.D.P., Saron C. Influence of Compatibilizer on the Properties of Low-Density Polyethylene/Polyamide 6 Blends Obtained by Mechanical Recycling of Multilayer Film Waste. Waste Manag. Res. 2018;36:729–736. doi: 10.1177/0734242X18777795. PubMed DOI
Yang J., Kang G., Liu Y., Chen K., Kan Q. Life Prediction for Rate-Dependent Low-Cycle Fatigue of PA6 Polymer Considering Ratchetting: Semi-Empirical Model and Neural Network Based Approach. Int. J. Fatigue. 2020;136:105619. doi: 10.1016/j.ijfatigue.2020.105619. DOI
Yang J., Kang G., Chen K., Kan Q., Liu Y. Experimental Study on Rate-Dependent Uniaxial Whole-Life Ratchetting and Fatigue Behavior of Polyamide 6. Int. J. Fatigue. 2020;132:105402. doi: 10.1016/j.ijfatigue.2019.105402. DOI
Eftekhari M., Fatemi A. On the Strengthening Effect of Increasing Cycling Frequency on Fatigue Behavior of Some Polymers and Their Composites: Experiments and Modeling. Int. J. Fatigue. 2016;87:153–166. doi: 10.1016/j.ijfatigue.2016.01.014. DOI
Qi Z., Lu L., Doan L., Thota B., Zeng D., Su X. Frequency Effects on High-Density Polyethylene Failure under Cyclic Loading; Proceedings of the WCX™ 17: SAE World Congress Experience 2017; Detroit, MI, USA. 4–6 April 2017; Warrendale, PA, USA: SAE International; 2017.
Premanand A., Rienks M., Balle F. Accelerated Estimation of the Very High Cycle Fatigue Strength and Life of Polymer Composites under Ultrasonic Cyclic Three-Point Bending. Mater. Des. 2024;240:112872. doi: 10.1016/j.matdes.2024.112872. DOI
Suresh S. Fatigue of Materials. Cambridge University Press; Cambridge, UK: 1998.
Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-Cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI
Tao G., Xia Z. A Non-Contact Real-Time Strain Measurement and Control System for Multiaxial Cyclic/Fatigue Tests of Polymer Materials by Digital Image Correlation Method. Polym. Test. 2005;24:844–855. doi: 10.1016/j.polymertesting.2005.06.013. DOI
Tao G., Xia Z. Ratcheting Behavior of an Epoxy Polymer and Its Effect on Fatigue Life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI
Müller M., Šleger V., Kolář V., Hromasová M., Piš D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC
Xia Z., Shen X., Ellyin F. Biaxial Cyclic Deformation of an Epoxy Resin: Experiments and Constitutive Modeling. J. Mater. Sci. 2005;40:643–654. doi: 10.1007/s10853-005-6302-0. DOI
Chen Y., Smith L.V. Ratcheting and Recovery of Adhesively Bonded Joints under Tensile Cyclic Loading. Mech. Time-Depend. Mater. 2021;27:59–78. doi: 10.1007/s11043-021-09532-x. DOI
Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial Ratchetting and Low-Cycle Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints under Cyclic Tension Deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI
Benaarbia A., Chrysochoos A., Robert G. Thermomechanical Behavior of PA6.6 Composites Subjected to Low Cycle Fatigue. Compos. Part B Eng. 2015;76:52–64. doi: 10.1016/j.compositesb.2015.02.011. DOI
Kovács R.L., Csontos M., Gyöngyösi S., Elek J., Parditka B., Deák G., Kuki Á., Kéki S., Erdélyi Z. Surface characterization of plasma-modified low density polyethylene by attenuated total reflectance fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics. Polym. Test. 2021;96:107080. doi: 10.1016/j.polymertesting.2021.107080. DOI
Jebashalomi V., Charles P., Rajaram R. Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) isolated from plastic-polluted tropical coastal environment. Sci. Total Environ. 2024;924:171580. doi: 10.1016/j.scitotenv.2024.171580. PubMed DOI
Tao L., Ma X., Ye L., Jia J., Wang L., Ma P., Liu J. Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR. J. Anal. Appl. Pyrol. 2021;158:105267. doi: 10.1016/j.jaap.2021.105267. DOI
Silva D., Wiebeck H. Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: A comparison between confocal Raman and ATR-FTIR spectroscopies. Vib. Spectrosc. 2017;92:259–266. doi: 10.1016/j.vibspec.2017.08.009. DOI
Moez A., Aly S., Elshaer Y. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;93:203–207. doi: 10.1016/j.saa.2012.02.031. PubMed DOI
Doğan O., Kayacan I. Pyrolysis of Low and High Density Polyethylene. Part II: Analysis of Liquid Products Using FTIR and NMR Spectroscopy. Energy Sources Part A Recovery Util. Environ. Eff. 2008;30:392–400. doi: 10.1080/15567030701457152. DOI
Khonakdar H. Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Compos. Part B Eng. 2015;76:343–353. doi: 10.1016/j.compositesb.2015.02.031. DOI
Awad S.A. Mechanical and thermal characterisations of low-density polyethylene/nanoclay composites. Polym. Polym. Compos. 2021;29:1325–1332. doi: 10.1177/0967391120968441. DOI
Mohagheghian I., McShane G., Stronge W. Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. Int. J. Impact Eng. 2015;80:162–176. doi: 10.1016/j.ijimpeng.2015.02.002. DOI
Bashir M.A. Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids. 2021;2:108–120. doi: 10.3390/solids2010006. DOI