Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste

. 2024 Oct 10 ; 16 (20) : . [epub] 20241010

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39458690

Grantová podpora
2024:31140/1312/3102 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2024:31140/1312/3102: "Research of factors affecting ecological processing and use of polymer composite materials based on natural fillers"
2023:31140/1312/3104 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2023:31140/1312/3104: "Development and testing of polymer composite materials with natural reinforcement"

This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set up to 80% of the maximum load in static tensile testing demonstrated satisfactory functionality of the recycled material developed by using the injection molding process. There was no significant change in the tensile strength under static and cyclic fatigue tests. Under cyclic loading, there was a quasi-static effect manifested by plastic deformation, and the displacement increased significantly. The static and cyclic tensile tests indicated improvement in the mechanical performance of the recycled LDPE as compared to the virgin material, owing to the high quality of the regranulates. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to analyze the functional groups in virgin and recycled LDPE samples. The analysis showed no significant change in the transmittance spectra. The thermal degradation performance was also analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The results were quite similar for both virgin and recycled LDPE.

Zobrazit více v PubMed

Hundertmark T., Mayer M., McNally C., Simons T.J., Witte C. Recycling and the Future of the Plastics Industry|McKinsey. [(accessed on 17 January 2024)]. Available online: https://www.mckinsey.com/industries/chemicals/our-insights/how-plastics-waste-recycling-could-transform-the-chemical-industry.

Duque J.V.F., Martins M.F., Debenest G., Orlando M.T.D.A. The Influence of the Recycling Stress History on LDPE Waste Pyrolysis. Polym. Test. 2020;86:106460. doi: 10.1016/j.polymertesting.2020.106460. DOI

Techawinyutham L., Tengsuthiwat J., Srisuk R., Techawinyutham W., Mavinkere Rangappa S., Siengchin S. Recycled LDPE/PETG Blends and HDPE/PETG Blends: Mechanical, Thermal, and Rheological Properties. J. Mater. Res. Technol. 2021;15:2445–2458. doi: 10.1016/j.jmrt.2021.09.052. DOI

Müller M., Chotěborský R., Valášek P., Hloch S. Unusual Possibility of Wear Resistance Increase Research in the Sphere of Soil Cultivation. Teh. Vjesn. 2013;20:641–646.

Schulte A., Velarde P.Á.S., Marbach L., Mörbitz P. Measuring the Circularity Potential of Recycled LDPE Based on Quantity and Quality Conservation—A Functional Requirement Matrix Approach. Resour. Conserv. Recycl. Adv. 2023;17:200127. doi: 10.1016/j.rcradv.2022.200127. DOI

Mleziva J. Polymery—Výroba, Struktura, Vlastnosti a Použití. 2nd ed. Sobotáles; Praha, Czech Republic: 2000.

Přikrylová J. Bachelor’s Thesis. Tomas Bata University in Zlín; Zlín, Czech Republic: 2017. Aplikační Potenciál LDPE. LLDPE, HDPE a Jejich Směsí.

Bertin S., Robin J.J. Study and Characterization of Virgin and Recycled LDPE/PP Blends. Eur. Polym. J. 2002;38:2255–2264. doi: 10.1016/S0014-3057(02)00111-8. DOI

Núñez S.S., Conesa J.A., Moltó J., Fullana A. Decontamination of Recycled LDPE Using Different Washing Methods. Resour. Conserv. Recycl. 2023;195:107017. doi: 10.1016/j.resconrec.2023.107017. DOI

Gao P., Krantz J., Ferki O., Nieduzak Z., Perry S., Sobkowicz M.J., Masato D. Thermo-Mechanical Recycling via Ultrahigh-Speed Extrusion of Film-Grade Recycled LDPE and Injection Molding. Sustain. Mater. Technol. 2023;38:e00719. doi: 10.1016/j.susmat.2023.e00719. DOI

Moreno D.D.P., Hirayama D., Saron C. Accelerated Aging of Pine Wood Waste/Recycled LDPE Composite. Polym. Degrad. Stab. 2018;149:39–44. doi: 10.1016/j.polymdegradstab.2018.01.014. DOI

Gomes D.A.C., de Novais Miranda E.H., de Araújo Veloso M.C.R., da Silva M.G., Ferreira G.C., Mendes L.M., Júnior J.B.G. Production and Characterization of Recycled Low-Density Polyethylene/Amazon Palm Fiber Composites. Ind. Crop. Prod. 2023;201:116833. doi: 10.1016/j.indcrop.2023.116833. DOI

Kibirkštis E., Mayik V., Zatserkovna R., Vaitasius K., Stepanenko A., Kandrotaitė-Janutienė R., Venytė I., Danilovas P.P. Study of Physical and Mechanical Properties of Partially Biodegradable LDPE Polymeric Films and Their Application for Printing and Packaging. Polym. Test. 2022;112:107646. doi: 10.1016/j.polymertesting.2022.107646. DOI

Pedroso A.G., Rosa D.S. Mechanical, Thermal and Morphological Characterization of Recycled LDPE/Corn Starch Blends. Carbohydr. Polym. 2005;59:1–9. doi: 10.1016/j.carbpol.2004.08.018. DOI

Scott G. ‘Green’ Polymers. Polym. Degrad. Stab. 2000;68:1–7. doi: 10.1016/S0141-3910(99)00182-2. DOI

Conesa J.A., Nuñez S.S., Ortuño N., Moltó J. Pah and Pop Presence in Plastic Waste and Recyclates: State of the Art. Energies. 2021;14:3451. doi: 10.3390/en14123451. DOI

Santagata C., Iaquaniello G., Salladini A., Agostini E., Capocelli M., De Falco M. Production of Low-Density Poly-Ethylene (LDPE) from Chemical Recycling of Plastic Waste: Process Analysis. J. Clean. Prod. 2020;253:119837. doi: 10.1016/j.jclepro.2019.119837. DOI

Müller M., Rudawska A., Tichý M., Kolář V., Hromasová M. Research on Wear Resistance of Polymeric Composite Materials Based on Microparticles from Tyre Recyclation Process. Manuf. Technol. 2020;20:223–228. doi: 10.21062/mft.2020.031. DOI

Maris J., Bourdon S., Brossard J.M., Cauret L., Fontaine L., Montembault V. Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes. Polym. Degrad. Stab. 2018;147:245–266. doi: 10.1016/j.polymdegradstab.2017.11.001. DOI

Oblak P., Gonzalez-Gutierrez J., Zupančič B., Aulova A., Emri I. Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene. Polym. Degrad. Stab. 2015;114:133–145. doi: 10.1016/j.polymdegradstab.2015.01.012. DOI

Vera-Sorroche J., Kelly A., Brown E., Coates P., Karnachi N., Harkin-Jones E., Li K., Deng J. Thermal Optimisation of Polymer Extrusion Using In-Process Monitoring Techniques. Appl. Therm. Eng. 2013;53:405–413. doi: 10.1016/j.applthermaleng.2012.04.013. DOI

Gryn’ova G., Hodgson J.L., Coote M.L. Revising the Mechanism of Polymer Autooxidation. Org. Biomol. Chem. 2011;9:480–490. doi: 10.1039/C0OB00596G. PubMed DOI

Luzuriaga S., Kovářová J., Fortelný I. Degradation of Pre-Aged Polymers Exposed to Simulated Recycling: Properties and Thermal Stability. Polym. Degrad. Stab. 2006;91:1226–1232. doi: 10.1016/j.polymdegradstab.2005.09.004. DOI

Vilaplana F., Karlsson S. Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review. Macromol. Mater. Eng. 2008;293:274–297. doi: 10.1002/mame.200700393. DOI

Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repair. Prog. Mater. Sci. 2016;83:536–573. doi: 10.1016/j.pmatsci.2016.07.007. DOI

Barbosa S.E., Capiati N.J., Kenny J.M. Processability and Mechanical Properties of Ternary Composites PP/EPDM/GF. Polym. Compos. 2000;21:377–386. doi: 10.1002/pc.10196. DOI

Katz H.S., Milewski J. Handbook of Fillers and Reinforcements for Plastics. Van Nostrand Reinhold Co.; New York, NY, USA: 2003.

Zhang L., Liu Z., Wu D., Zhang H., Zhu P. Fast and Synergetic Fatigue Life Prediction of Short Fiber Reinforced Polymer Composites from Monotonic and Cyclic Loading Behavior. Compos. Sci. Technol. 2023;241:110121. doi: 10.1016/j.compscitech.2023.110121. DOI

Durjava A., Nagode M., Šeruga D. Applicability of Memory Rules during Cyclic Stress–Strain Response of Polymers PA6 and PA66 GF30. Mater. Today Commun. 2023;35:106342. doi: 10.1016/j.mtcomm.2023.106342. DOI

Baradaran S., Rahimi J., Ameri M., Maleki A. Mechanical Performance of Asphalt Mixture Containing Eco-Friendly Additive by Recycling PET. Case Stud. Constr. Mater. 2024;20:e02740. doi: 10.1016/j.cscm.2023.e02740. DOI

Saleh M., Anwar S., AlFaify A.Y., Al-Ahmari A.M., Abd Elgawad A.E.E. Development of PLA/Recycled-Desized Carbon Fiber Composites for 3D Printing: Thermal, Mechanical, and Morphological Analyses. J. Mater. Res. Technol. 2024;29:2768–2780. doi: 10.1016/j.jmrt.2024.01.267. DOI

Di L., Yang Y., Wang S. Additive Manufacturing Thermoplastic Recycling: Profit-Driven Planning and Optimization. J. Clean. Prod. 2024;436:140598. doi: 10.1016/j.jclepro.2024.140598. DOI

Plastics—Determination of Tensile Properties Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO; Geneva, Switzerland: 2012.

Kolář V., Hrabě P., Müller M., Hromasová M., Herák D., Sutanto H. Influence of Alkali Treatment of Jatropha curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading. Polymers. 2023;15:395. doi: 10.3390/polym15020395. PubMed DOI PMC

Ahmed T., Mamat O. The Development and Characteriza-tion of HDPE-silica Sand Nanoparticles Composites; Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering; Penang, Malaysia. 5–6 December 2011; pp. 6–11.

Alapati S., Meledath J.T., Karmarkar A. Effect of Morpholo-gy on Electrical Treeing in Low Density Polyethylene Nanocomposites. IET Sci. Meas. Technol. 2014;8:60–68. doi: 10.1049/iet-smt.2012.0032. DOI

Zaharescu T., Râpă M., Blanco I., Borbath T., Borbath I. Durability of LDPE/UHMWPE Composites under Accelerated Degradation. Polymers. 2020;12:1241. doi: 10.3390/polym12061241. PubMed DOI PMC

Li D., Zhou L., Wang X., He L., Yang X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials. 2019;12:1746. doi: 10.3390/ma12111746. PubMed DOI PMC

Moreno D.D.P., Saron C. Influence of Compatibilizer on the Properties of Low-Density Polyethylene/Polyamide 6 Blends Obtained by Mechanical Recycling of Multilayer Film Waste. Waste Manag. Res. 2018;36:729–736. doi: 10.1177/0734242X18777795. PubMed DOI

Yang J., Kang G., Liu Y., Chen K., Kan Q. Life Prediction for Rate-Dependent Low-Cycle Fatigue of PA6 Polymer Considering Ratchetting: Semi-Empirical Model and Neural Network Based Approach. Int. J. Fatigue. 2020;136:105619. doi: 10.1016/j.ijfatigue.2020.105619. DOI

Yang J., Kang G., Chen K., Kan Q., Liu Y. Experimental Study on Rate-Dependent Uniaxial Whole-Life Ratchetting and Fatigue Behavior of Polyamide 6. Int. J. Fatigue. 2020;132:105402. doi: 10.1016/j.ijfatigue.2019.105402. DOI

Eftekhari M., Fatemi A. On the Strengthening Effect of Increasing Cycling Frequency on Fatigue Behavior of Some Polymers and Their Composites: Experiments and Modeling. Int. J. Fatigue. 2016;87:153–166. doi: 10.1016/j.ijfatigue.2016.01.014. DOI

Qi Z., Lu L., Doan L., Thota B., Zeng D., Su X. Frequency Effects on High-Density Polyethylene Failure under Cyclic Loading; Proceedings of the WCX™ 17: SAE World Congress Experience 2017; Detroit, MI, USA. 4–6 April 2017; Warrendale, PA, USA: SAE International; 2017.

Premanand A., Rienks M., Balle F. Accelerated Estimation of the Very High Cycle Fatigue Strength and Life of Polymer Composites under Ultrasonic Cyclic Three-Point Bending. Mater. Des. 2024;240:112872. doi: 10.1016/j.matdes.2024.112872. DOI

Suresh S. Fatigue of Materials. Cambridge University Press; Cambridge, UK: 1998.

Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-Cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI

Tao G., Xia Z. A Non-Contact Real-Time Strain Measurement and Control System for Multiaxial Cyclic/Fatigue Tests of Polymer Materials by Digital Image Correlation Method. Polym. Test. 2005;24:844–855. doi: 10.1016/j.polymertesting.2005.06.013. DOI

Tao G., Xia Z. Ratcheting Behavior of an Epoxy Polymer and Its Effect on Fatigue Life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI

Müller M., Šleger V., Kolář V., Hromasová M., Piš D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC

Xia Z., Shen X., Ellyin F. Biaxial Cyclic Deformation of an Epoxy Resin: Experiments and Constitutive Modeling. J. Mater. Sci. 2005;40:643–654. doi: 10.1007/s10853-005-6302-0. DOI

Chen Y., Smith L.V. Ratcheting and Recovery of Adhesively Bonded Joints under Tensile Cyclic Loading. Mech. Time-Depend. Mater. 2021;27:59–78. doi: 10.1007/s11043-021-09532-x. DOI

Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial Ratchetting and Low-Cycle Fatigue Failure Behaviors of Adhesively Bonded Butt-Joints under Cyclic Tension Deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI

Benaarbia A., Chrysochoos A., Robert G. Thermomechanical Behavior of PA6.6 Composites Subjected to Low Cycle Fatigue. Compos. Part B Eng. 2015;76:52–64. doi: 10.1016/j.compositesb.2015.02.011. DOI

Kovács R.L., Csontos M., Gyöngyösi S., Elek J., Parditka B., Deák G., Kuki Á., Kéki S., Erdélyi Z. Surface characterization of plasma-modified low density polyethylene by attenuated total reflectance fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics. Polym. Test. 2021;96:107080. doi: 10.1016/j.polymertesting.2021.107080. DOI

Jebashalomi V., Charles P., Rajaram R. Microbial degradation of low-density polyethylene (LDPE) and polystyrene using Bacillus cereus (OR268710) isolated from plastic-polluted tropical coastal environment. Sci. Total Environ. 2024;924:171580. doi: 10.1016/j.scitotenv.2024.171580. PubMed DOI

Tao L., Ma X., Ye L., Jia J., Wang L., Ma P., Liu J. Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR. J. Anal. Appl. Pyrol. 2021;158:105267. doi: 10.1016/j.jaap.2021.105267. DOI

Silva D., Wiebeck H. Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: A comparison between confocal Raman and ATR-FTIR spectroscopies. Vib. Spectrosc. 2017;92:259–266. doi: 10.1016/j.vibspec.2017.08.009. DOI

Moez A., Aly S., Elshaer Y. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;93:203–207. doi: 10.1016/j.saa.2012.02.031. PubMed DOI

Doğan O., Kayacan I. Pyrolysis of Low and High Density Polyethylene. Part II: Analysis of Liquid Products Using FTIR and NMR Spectroscopy. Energy Sources Part A Recovery Util. Environ. Eff. 2008;30:392–400. doi: 10.1080/15567030701457152. DOI

Khonakdar H. Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Compos. Part B Eng. 2015;76:343–353. doi: 10.1016/j.compositesb.2015.02.031. DOI

Awad S.A. Mechanical and thermal characterisations of low-density polyethylene/nanoclay composites. Polym. Polym. Compos. 2021;29:1325–1332. doi: 10.1177/0967391120968441. DOI

Mohagheghian I., McShane G., Stronge W. Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. Int. J. Impact Eng. 2015;80:162–176. doi: 10.1016/j.ijimpeng.2015.02.002. DOI

Bashir M.A. Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids. 2021;2:108–120. doi: 10.3390/solids2010006. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...