Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant no. 2021:31140/1312/3115: "Degradation of 3D printed polymer composite materials with cellulose-based filler, Czech University of Life Sciences Prague"
Internal grant agency of Faculty of Engineering (IGA FE)
PubMed
35406175
PubMed Central
PMC9003259
DOI
10.3390/polym14071301
PII: polym14071301
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printing, PLA polymer, SEM, additive manufacturing, biological filler, cyclic test,
- Publikační typ
- časopisecké články MeSH
Additive production is currently perceived as an advanced technology, where intensive research is carried out in two basic directions-modifications of existing printing materials and the evaluation of mechanical properties depending on individual production parameters and the technology used. The current research is focused on the evaluation of the fatigue behavior of 3D-printed test specimens made of pure PLA and PLA reinforced with filler based on pinewood, bamboo, and cork using FDM (fused deposition modeling) technology. This research was carried out in response to the growing demand for filaments from biodegradable materials. This article describes the results of tensile fatigue tests and image analysis of the fracture surface determined by the SEM method. Biodegradable PLA-based materials have their limitations that influence their applicability in practice. One of these limitations is fatigue life, which is the cyclic load interval exceeding 50% of the tensile strength determined in a static test. Comparison of the cyclic fatigue test results for pure PLA and PLA reinforced with natural reinforcement, e.g., pinewood, bamboo, and cork, showed that, under the same loading conditions, the fatigue life of the 3D-printed specimens was similar, i.e., the filler did not reduce the material's ability to respond to low-cycle fatigue. Cyclic testing did not have a significant effect on the change in tensile strength and associated durability during this loading interval for PLA-based materials reinforced with biological filler. Under cyclic loading, the visco-elastic behavior of the tested materials was found to increase with increasing values of cyclic loading of 30%, 50% and 70%, and the permanent deformation of the tested materials, i.e., viscoelastic behavior (creep), also increased. SEM analysis showed the presence of porosity, interlayer disturbances, and at the same time good interfacial compatibility of PLA with the biological filler.
Zobrazit více v PubMed
Ayrilmis N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI
Kermavnar T., Shannon A., O’Sullivan L.W. The application of additive manufacturing/3D printing in ergonomic aspects of product design: A systematic review. Appl. Ergon. 2021;97:103528. doi: 10.1016/j.apergo.2021.103528. PubMed DOI
Wang Z., Xu J., Lu Y., Hu L., Fan Y., Ma J., Zhou X. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Ind. Crops Prod. 2017;109:889–896. doi: 10.1016/j.indcrop.2017.09.061. DOI
Bhagia S., Bornani K., Agarwal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C.G., Zhao X., Kunc V., et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today. 2021;24:101078. doi: 10.1016/j.apmt.2021.101078. DOI
Svatík J., Lepcio P., Ondreáš F., Zárybnická K., Zbončák M., Menčík P., Jančář J. PLA toughening via bamboo-inspired 3D printed structural design. Polym. Test. 2021;104:107405. doi: 10.1016/j.polymertesting.2021.107405. DOI
Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman S., Chiyani M. High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces Mech. 2021;3:100016. doi: 10.1016/j.finmec.2021.100016. DOI
Bajwa D., Eichers M., Shojaeiarani J., Kallmeyer A. Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller. Ind. Crops Prod. 2021;173:114132. doi: 10.1016/j.indcrop.2021.114132. DOI
Fortunati E., Luzi F., Puglia D., Dominici F., Santulli C., Kenny J.M., Torre L. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur. Polym. J. 2014;56:77–91. doi: 10.1016/j.eurpolymj.2014.03.030. DOI
Miturska I., Rudawska A., Müller M., Valášek P. The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time. Materials. 2020;13:291. doi: 10.3390/ma13020291. PubMed DOI PMC
Jamshaid H., Mishra R., Basra S., Rajput A.W., Hassan T., Petru M., Choteborsky R., Muller M. Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. J. Nat. Fibers. 2020:1–16. doi: 10.1080/15440478.2020.1843586. DOI
Kamble Z., Mishra R.K., Behera B.K., Tichý M., Kolář V., Müller M. Design, development, and characterization of advanced textile structural hollow composites. Polymers. 2021;13:3535. doi: 10.3390/polym13203535. PubMed DOI PMC
Yao T., Ye J., Deng Z., Zhang K., Ma Y., Ouyang H. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Compos. Part B Eng. 2020;188:107894. doi: 10.1016/j.compositesb.2020.107894. DOI
Yao T., Deng Z., Zhang K., Li S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos. Part B Eng. 2019;163:393–402. doi: 10.1016/j.compositesb.2019.01.025. DOI
Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI
Tanikella N.G., Wittbrodt B., Pearce J.M. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit. Manuf. 2017;15:40–47. doi: 10.1016/j.addma.2017.03.005. DOI
Sood A.K., Ohdar R.K., Mahapatra S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010;31:287–295. doi: 10.1016/j.matdes.2009.06.016. DOI
Mukherjee T., Kao N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J. Polym. Environ. 2011;19:714–725. doi: 10.1007/s10924-011-0320-6. DOI
Tiwary V.K., Arunkumar P., Kulkarni P.M. Micro-particle grafted eco-friendly polymer filaments for 3D printing technology. Mater. Today Proc. 2020;28:1980–1984. doi: 10.1016/j.matpr.2020.05.573. DOI
Kariz M., Sernek M., Obućina M., Kuzman M.K. Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 2018;14:135–140. doi: 10.1016/j.mtcomm.2017.12.016. DOI
Zhao D., Cai X., Shou G., Gu Y., Wang P. Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng. Mater. 2016;667:250–258. doi: 10.4028/www.scientific.net/KEM.667.250. DOI
Daver F., Lee K.P.M., Brandt M., Shanks R. Cork–PLA composite filaments for fused deposition modelling. Compos. Sci. Technol. 2018;168:230–237. doi: 10.1016/j.compscitech.2018.10.008. DOI
Le Guen M.J., Hill S., Smith D., Theobald B., Gaugler E., Barakat A., Mayer-Laigle C. Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Front. Chem. 2019;7:735. doi: 10.3389/fchem.2019.00735. PubMed DOI PMC
Tao Y., Wang H., Li Z., Li P., Shi S.Q. Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials. 2017;10:339. doi: 10.3390/ma10040339. PubMed DOI PMC
Zhao X., Tekinalp H., Meng X., Ker D., Benson B., Pu Y., Ragauskas A.J., Wang Y., Li K., Webb E., et al. Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS Appl. Bio Mater. 2019;2:4557–4570. doi: 10.1021/acsabm.9b00675. PubMed DOI
Bhagia S., Lowden R.R., Erdman D., Rodriguez M., Haga B.A., Solano I.R.M., Gallego N.C., Pu Y., Muchero W., Kunc V., et al. Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Appl. Mater. Today. 2020;21:100832. doi: 10.1016/j.apmt.2020.100832. DOI
Badouard C., Traon F., Denoual C., Mayer-Laigle C., Paës G., Bourmaud A. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind. Crops Prod. 2019;135:246–250. doi: 10.1016/j.indcrop.2019.04.049. DOI
Yao T., Zhang K., Deng Z., Ye J. A novel generalized stress invariant-based strength model for inter-layer failure of FFF 3D printing PLA material. Mater. Des. 2020;193:108799. doi: 10.1016/j.matdes.2020.108799. DOI
Antonio Travieso-Rodriguez J., Zandi M.D., Jerez-Mesa R., Lluma-Fuentes J. Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication. J. Mater. Res. Technol. 2020;9:8507–8516. doi: 10.1016/j.jmrt.2020.06.003. DOI
Huber T., Müssig J. Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos. Interfaces. 2008;15:335–349. doi: 10.1163/156855408783810948. DOI
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Joseph Arockiam A., Subramanian K., Padmanabhan R.G., Selvaraj R., Dilip R., Bagal K., Rajesh S. A review on PLA with different fillers used as a filament in 3D printing. Mater. Today Proc. 2022;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI
Ruggiero A., Valášek P., Müller M., D’Amato R. Tribological investigation of epoxy/seed particle composite obtained from residues of processing Jatropha Curcas L. fruits. Compos. Part B Eng. 2019;167:654–667. doi: 10.1016/j.compositesb.2019.03.041. DOI
Hafiz T.A., Abdel Wahab M., Crocombe A.D., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Shahar F.S., Hameed Sultan M.T., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Md Shah A.U. Fatigue and Impact Properties of 3D Printed PLA reinforced with Kenaf particles. J. Mater. Res. Technol. 2021;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Tao G., Xia Z. A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method. Polym. Test. 2005;24:844–855. doi: 10.1016/j.polymertesting.2005.06.013. DOI
3D Filamenti|Plastika Trček. [(accessed on 21 February 2022)]. Available online: https://plastikatrcek.si/3d-filamenti/
Jerez-Mesa R., Travieso-Rodriguez J.A., Llumà-Fuentes J., Gomez-Gras G., Puig D. Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manuf. 2017;13:872–879. doi: 10.1016/j.promfg.2017.09.146. DOI
Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial ratchetting and low-cycle fatigue failure behaviors of adhesively bonded butt-joints under cyclic tension deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI
Magalhães da Silva S.P., Antunes T., Costa M.E.V., Oliveira J.M. Cork-like filaments for Additive Manufacturing. Addit. Manuf. 2020;34:101229. doi: 10.1016/j.addma.2020.101229. DOI
Gama N., Ferreira A., Barros-Timmons A. 3D printed cork/polyurethane composite foams. Mater. Des. 2019;179:107905. doi: 10.1016/j.matdes.2019.107905. DOI
Abdullah A.H., Alias S.K., Abdan K., Ali A. Advanced Materials Research. Volume 576. Trans Tech Publications Ltd.; Baech, Switzerland: 2012. A study of fatigue life of kenaf fibre composites; pp. 757–760.
Suresh S. Fatigue of Materials. Cambridge University Press; Cambridge, UK: 1998.
Tao G., Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI
Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. PubMed DOI
Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue. 2017;98:14–31. doi: 10.1016/j.ijfatigue.2017.01.001. DOI
Silva J.S., Rodrigues J.D., Moreira R.A.S. Application of cork compounds in sandwich structures for vibration damping. J. Sandw. Struct. Mater. 2010;12:495–515. doi: 10.1177/1099636209104538. DOI
Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste
Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material
Research on Low-Cycle Fatigue Engineered Hybrid Sandwich Ski Construction