Numerical and Experimental Analysis of Mechanical Properties in Hybrid Epoxy-Basalt Composites Partially Reinforced with Cellulosic Fillers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
no. 2023:31140/1312/3111
Numerical and experimental analysis of hybrid composites partially reinforced with bio-fibers and fillers
no. 2022:31140/1312/3111
Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague, "Numerical modelling and computational analysis of lightweight composite structures in automotive components"
PubMed
37512173
PubMed Central
PMC10381401
DOI
10.3390/ma16144898
PII: ma16144898
Knihovny.cz E-resources
- Keywords
- basalt woven fabrics, cellulosic/bio-fillers, hybrid composites, mechanical properties, modulus,
- Publication type
- Journal Article MeSH
The current work is focused on numerical and experimental studies of woven fabric composites modified by hybridisation with biological (cellulosic) filler materials. The mechanical performance of the composites is characterized under tensile, bending and impact loads and the effect of hybridisation is observed with respect to pure and nonhybrid composites. Numerical models are developed using computational tools to predict mechanical performance under tensile loading. The computational prediction results are compared and validated with relevant experimental results. This research is aimed at understanding the mechanical performance of basalt-epoxy composites partially reinforced with micro-/nano-sized bio-fillers from cellulose and intended for various application areas. Different weave structures, e.g., plain, twill, matt, etc., were investigated with respect to the mechanical properties of the hybrid composites. The effects of hybridizing with cellulose particles and different weave patterns of the basalt fabric are studied. In general, the use of high-strength fibres such as basalt along with cellulosic fillers representing up to 3% of the total weight improves the mechanical performance of the hybrid structures. The thermomechanical performance of the hybrid composites improved significantly by using basalt fabric as well as by addition of 3% weight of cellulosic fillers. Results reveal the advantages of hybridisation and the inclusion of natural cellulosic fillers in the hybrid composite structures. The material developed is suitable for high-end applications in components for construction that demand advanced mechanical and thermomechanical performance. Furthermore, the inclusion of biodegradable fillers fulfills the objectives of sustainable and ecological construction materials.
See more in PubMed
Abrate S. Impact on Laminated Composites: Recent Advances. Appl. Mech. Rev. 1994;47:517–544. doi: 10.1115/1.3111065. DOI
Kretsis G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites. 1987;18:13–23. doi: 10.1016/0010-4361(87)90003-6. DOI
Wang J., Waas A.M., Wang H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos. Struct. 2013;96:298–311. doi: 10.1016/j.compstruct.2012.09.002. DOI
Güneş A., Şahin Ö.S. Investigation of the effect of surface crack on low-velocity impact response in hybrid laminated composite plates. J. Braz. Soc. Mech. Sci. Eng. 2020;42:348. doi: 10.1007/s40430-020-02422-2. DOI
Swolfs Y., Gorbatikh L., Verpoest I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014;67:181–200. doi: 10.1016/j.compositesa.2014.08.027. DOI
Tehrani-Dehkordi M., Nosraty H., Rajabzadeh M.-H. Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites. Fibers Polym. 2015;16:918–925. doi: 10.1007/s12221-015-0918-8. DOI
Simić M., Stavrakis A.K., Sinha A., Premčevski V., Markoski B., Stojanović G.M. Portable Respiration Monitoring System with an Embroidered Capacitive Facemask Sensor. Biosensors. 2022;12:339. doi: 10.3390/bios12050339. PubMed DOI PMC
Zhang D., Sun Y., Chen L., Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Des. 2013;50:750–756. doi: 10.1016/j.matdes.2013.03.044. DOI
Sarasini F., Tirillò J., Ferrante L., Valente M., Valente T., Lampani L., Gaudenzi P., Cioffi S., Iannace S., Sorrentino L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. Part B Eng. 2013;59:204–220. doi: 10.1016/j.compositesb.2013.12.006. DOI
Stavrakis A.K., Simić M., Stojanović G.M. Electrical Characterization of Conductive Threads for Textile Electronics. Electronics. 2021;10:967. doi: 10.3390/electronics10080967. DOI
Karataş M.A., Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. China Ordnance Soc. 2018;14:318–326. doi: 10.1016/j.dt.2018.02.001. DOI
Sinha A., Dhanjai, Stavrakis A.K., Stojanović G.M. Textile-based electrochemical sensors and their applications. Talanta. 2022;244:123425. doi: 10.1016/j.talanta.2022.123425. PubMed DOI
Stavrakis A.K., Simić M., Stojanović G.M. A Study of the Performance Degradation of Conductive Threads Based on the Effects of Tensile Forces and Repeated Washing. Polymers. 2022;14:4581. doi: 10.3390/polym14214581. PubMed DOI PMC
Sinha A., Stavrakis A.K., Simić M., Stojanović G.M. Polymer-Thread-Based Fully Textile Capacitive Sensor Embroidered on a Protective Face Mask for Humidity Detection. ACS Omega. 2022;7:44928–44938. doi: 10.1021/acsomega.2c05162. PubMed DOI PMC
Sinha A., Stavrakis A.K., Simić M., Stojanović G.M. Wearable humidity sensor embroidered on a commercial face mask and its electrical properties. J. Mater. Sci. 2023;58:1680–1693. doi: 10.1007/s10853-022-08135-2. PubMed DOI PMC
Jamshaid H., Mishra R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2015;107:923–937. doi: 10.1080/00405000.2015.1071940. DOI
Li Z., Xiao T., Zhao S. Effects of surface treatments on Mechanical properties of Continuous basalt fibre cords and their Adhesion with rubber matrix. Fibers Polym. 2016;17:910–916. doi: 10.1007/s12221-016-5928-7. DOI
Wang X., Hu B., Feng Y., Liang F., Mo J., Xiong J., Qiu Y. Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Compos. Sci. Technol. 2008;68:444–450. doi: 10.1016/j.compscitech.2007.06.016. DOI
Amuthakkannan P., Manikandan V., Jappes J.T.W., Uthayakumar M. Influence of stacking sequence on mechanical properties of basalt-jute fiber-reinforced polymer hybrid composites. J. Polym. Eng. 2012;32:547–554. doi: 10.1515/polyeng-2012-0063. DOI
Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman S., Chiyani M. High-Cycle Bending Fatigue Properties of Additive-Manufactured ABS and PLA Polymers Fabricated by Fused Deposition Modeling 3D-Printing. Forces Mech. 2021;3:100016. doi: 10.1016/j.finmec.2021.100016. DOI
Kariz M., Sernek M., Obućina M., Kuzman M.K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018;14:135–140. doi: 10.1016/j.mtcomm.2017.12.016. DOI
Yao T., Deng Z., Zhang K., Li S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. Part B Eng. 2019;163:393–402. doi: 10.1016/j.compositesb.2019.01.025. DOI
Daver F., Lee K.P.M., Brandt M., Shanks R. Cork–PLA Composite Filaments for Fused Deposition Modelling. Compos. Sci. Technol. 2018;168:230–237. doi: 10.1016/j.compscitech.2018.10.008. DOI
Tanikella N.G., Wittbrodt B., Pearce J.M. Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3D Printing. Addit. Manuf. 2017;15:40–47. doi: 10.1016/j.addma.2017.03.005. DOI
Tiwary V.K., Arunkumar P., Kulkarni P.M. Micro-Particle Grafted Eco-Friendly Polymer Filaments for 3D Printing Technology. Mater. Today Proc. 2020;28:1980–1984. doi: 10.1016/j.matpr.2020.05.573. DOI
Mishra R., Wiener J., Petru M., Novotna J. Bio-Composites Reinforced with Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties. Fiber Polym. 2020;21:619–627. doi: 10.1007/s12221-020-9804-0. DOI
Pincheira G., Canales C., Medina C., Fernández E., Flores P. Influence of aramid fibers on the mechanical behavior of a hybrid carbon–aramid–reinforced epoxy composite. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015;232:58–66. doi: 10.1177/1464420715612827. DOI
Baghaei B., Skrifvars M., Berglin L. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern. Compos. Part A Appl. Sci. Manuf. 2015;76:154–161. doi: 10.1016/j.compositesa.2015.05.029. DOI
Sezgin H., Berkalp O.B. The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. J. Ind. Text. 2016;47:283–296. doi: 10.1177/1528083716644290. DOI
Lee J.S., Kim J.W. Impact response of carbon fibre fabric/thermoset-thermoplastic combined polymer composites. Compos. Adv. Lett. 2017;26:82–88. doi: 10.1177/096369351702600304. DOI
Rajasekar B.R., Asokan R., Senbagan M., Karthika R., Sivajyothi K., Sharma N. Evaluation on mechanical properties of intra-ply hybrid carbon-aramid/epoxy composite laminates. Mater. Today Proc. 2018;5:25323–25330. doi: 10.1016/j.matpr.2018.10.335. DOI
Swolfs Y., McMeeking R.M., Verpoest I., Gorbatikh L. The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites. Compos. Part A Appl. Sci. Manuf. 2015;69:279–287. doi: 10.1016/j.compositesa.2014.12.001. DOI
Gomez C., Salvatori D., Caglar B., Trigueira R., Orange G., Michaud V. Resin Transfer molding of High-Fluidity Polyamide-6 with modified Glass-Fabric preforms. Compos. Part A Appl. Sci. Manuf. 2021;147:106448. doi: 10.1016/j.compositesa.2021.106448. DOI
Baek I., Lee S. A Study of Films Incorporating Magnetite Nanoparticles as Susceptors for Induction Welding of Carbon Fiber Reinforced Thermoplastic. Materials. 2020;13:318. doi: 10.3390/ma13020318. PubMed DOI PMC
Minchenkov K., Vedernikov A., Safonov A., Akhatov I. Thermoplastic Pultrusion: A Review. Polymers. 2021;13:180. doi: 10.3390/polym13020180. PubMed DOI PMC
Bandaru A.K., Sachan Y., Ahmad S., Alagirusamy R., Bhatnagar N. On the mechanical response of 2D plain woven and 3D angle-interlock fabrics. Compos. Part B Eng. 2017;118:135–148. doi: 10.1016/j.compositesb.2017.03.011. DOI
Minchenkov K., Vedernikov A., Kuzminova Y., Gusev S., Sulimov A., Gulyaev A., Kreslavskaya A., Prosyanoy I., Xian G., Akhatov I., et al. Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates. Compos. Commun. 2022;35:101281. doi: 10.1016/j.coco.2022.101281. DOI
Cerit A., Marti M.E., Soydal U., Kocaman S., Ahmetli G. Effect of Modification with Various Epoxide Compounds on Mechanical, Thermal, and Coating Properties of Epoxy Resin. Int. J. Polym. Sci. 2016;2016:4968365. doi: 10.1155/2016/4968365. DOI
Ahmetli G., Yazicigil Z., Soydal U. Modification of the epoxy resin with epoxide and ester group containing oligomers and compounds. Proc. Est. Acad. Sci. 2015;64:71–76. doi: 10.3176/proc.2015.1S.01. DOI
Subagia I.A., Sugita I.K.G., Wirawan I.K.G., Dwidiani N.M., Yuwono A.H.Y.A.H. Thermal Conductivity of Carbon/Basal Fiber Reinforced Epoxy Hybrid Composites. Int. J. Technol. 2017;8:1498–1506. doi: 10.14716/ijtech.v8i8.701. DOI
Vedernikov A., Minchenkov K., Gusev S., Sulimov A., Zhou P., Li C., Xian G., Akhatov I., Safonov A. Effects of the Pre-Consolidated Materials Manufacturing Method on the Mechanical Properties of Pultruded Thermoplastic Composites. Polymers. 2022;14:2246. doi: 10.3390/polym14112246. PubMed DOI PMC
Zhou P., Li C., Bai Y., Dong S., Xian G., Vedernikov A., Akhatov I., Safonov A., Yue Q. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications. Constr. Build. Mater. 2022;349:128694. doi: 10.1016/j.conbuildmat.2022.128694. DOI
Pavlovski D., Mislavsky B., Antonov A. CNG cylinder manufacturers test basalt fibre. Reinf. Plast. 2007;51:36–39. doi: 10.1016/S0034-3617(07)70152-2. DOI
Aji I.S., Zainudin E.S., Khalina A., Sapuan S.M., Khairul M.D., Sapuan M.S. Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J. Therm. Anal. Calorim. 2011;109:893–900. doi: 10.1007/s10973-011-1807-z. DOI
Banea M.D., de Sousa F.S.M., da Silva L.F.M., Campilho R.D.S.G., de Pereira A.M.B. Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive. J. Adhes. Sci. Technol. 2011;25:2461–2474. doi: 10.1163/016942411X580144. DOI
Muller M., Sleger V., Kolar V., Hromasova M., Pis D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC
Jarukumjorn K., Suppakarn N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Compos. Part B Eng. 2009;40:623–627. doi: 10.1016/j.compositesb.2009.04.007. DOI
Sahu P., Gupta M. Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments. J. Reinf. Plast. Compos. 2017;36:1759–1780. doi: 10.1177/0731684417725584. DOI
Sen A.K., Kumar S. Coir-fiber-based fire retardant nano filler for epoxy composites. J. Therm. Anal. Calorim. 2010;101:265–271. doi: 10.1007/s10973-009-0637-8. DOI
Ayrilmis N., Buyuksari U., Dundar T. Waste Pine Cones as a Source of Reinforcing Fillers for Thermoplastic Composites. J. Appl. Polym. Sci. 2010;117:2324–2330. doi: 10.1002/app.32076. DOI
Ruggiero A., Valasek P., Mueller M. Exploitation of Waste Date Seeds Phoenix Dactylifera in Form of Polymeric Particle Biocomposite: Investigation on Adhesion, Cohesion. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2014.
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2015.
Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International; West Conshohocken, PA, USA: 2020.
Pakkanen J., Manfredi D., Minetola P., Iuliano L. About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. In: Campana G., Howlett R.J., Setchi R., Cimatti B., editors. Sustainable Design and Manufacturing 2017. Springer International Publishing; Cham, Germany: 2017. pp. 776–785.
Zhao D.X., Cai X., Shou G.Z., Gu Y.Q., Wang P.X. Study on the Preparation of Bamboo Plastic Composite Intend for Additive Manufacturing. Key Eng. Mater. 2016;667:250–258. doi: 10.4028/www.scientific.net/KEM.667.250. DOI
Antonio Travieso-Rodriguez J., Zandi M.D., Jerez-Mesa R., Lluma-Fuentes J. Fatigue Behavior of PLA-Wood Composite Manufactured by Fused Filament Fabrication. J. Mater. Res. Technol. 2020;9:8507–8516. doi: 10.1016/j.jmrt.2020.06.003. DOI
Svatik J., Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Mencik P., Jancar J. PLA Toughening via Bamboo-Inspired 3D Printed Structural Design. Polym. Test. 2021;104:107405. doi: 10.1016/j.polymertesting.2021.107405. DOI
Correa D., Papadopoulou A., Guberan C., Jhaveri N., Reichert S., Menges A., Tibbits S. 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Print. Addit. Manuf. 2015;2:106–116. doi: 10.1089/3dp.2015.0022. DOI
Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 Nanoparticles on Basalt/Polysiloxane Composites: Mechanical and Thermal Characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI
Tucker C.L., Liang E. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol. 1999;59:655–671. doi: 10.1016/S0266-3538(98)00120-1. DOI
Halpin Affdl J.C., Kardos J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976;16:344–352. doi: 10.1002/pen.760160512. DOI
Budarapu P.R., Zhuang X., Rabczuk T., Bordas S.P. Multiscale modeling of material failure: Theory and computational methods. Adv. Appl. Mech. 2019;52:1–103. doi: 10.1016/bs.aams.2019.04.002. DOI
Behera B.K., Mishra R. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Tech. 2007;19:259–276. doi: 10.1108/09556220710819483. DOI
Behera B.K., Pattanayak A.K., Mishra R.K. Prediction of fabric drape behaviour using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI
Gama N., Ferreira A., Barros-Timmons A. 3D Printed Cork/Polyurethane Composite Foams. Mater. Des. 2019;179:107905. doi: 10.1016/j.matdes.2019.107905. DOI
Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-Cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI
Essassi K., Rebiere J.-L., El Mahi A., Ben Souf M.A., Bouguecha A., Haddar M. Experimental and Analytical Investigation of the Bending Behaviour of 3D-Printed Bio-Based Sandwich Structures Composites with Auxetic Core under Cyclic Fatigue Tests. Compos. Part A Appl. Sci. Manuf. 2020;131:105775. doi: 10.1016/j.compositesa.2020.105775. DOI
Yang T., Saati F., Horoshenkov K., Xiong X., Mishra R. Study on the sound absorption behavior of multi-component polyester nonwovens: Experimental and numerical methods. Text. Res. J. 2019;89:3342–3361. doi: 10.1177/0040517518811940. DOI
Ayrilmis N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI
Yang T., Xiong X., Mishra R., Novák J., Militký J. Acoustic evaluation of Struto nonwovens and their relationship with thermal properties. Text. Res. J. 2018;88:426–437. doi: 10.1177/0040517516681958. DOI
Huber T., Müssig J. Fibre Matrix Adhesion of Natural Fibres Cotton, Flax and Hemp in Polymeric Matrices Analyzed with the Single Fibre Fragmentation Test. Compos. Interfaces. 2008;15:335–349. doi: 10.1163/156855408783810948. DOI
Shahar F.S., Sultan M.T.H., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Shah A.U.M. Fatigue and Impact Properties of 3D Printed PLA Reinforced with Kenaf Particles. J. Mater. Res. Technol. 2022;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Yao T., Zhang K., Deng Z., Ye J. A Novel Generalized Stress Invariant-Based Strength Model for Inter-Layer Failure of FFF 3D Printing PLA Material. Mater. Des. 2020;193:108799. doi: 10.1016/j.matdes.2020.108799. DOI
Le Duigou A., Correa D., Ueda M., Matsuzaki R., Castro M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020;194:108911. doi: 10.1016/j.matdes.2020.108911. DOI
Arockiam A.J., Subramanian K., Padmanabhan R.G., Selvaraj R., Bagal D.K., Rajesh S. A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Mater. Today Proc. 2022;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI
Le Duigou A., Castro M., Bevan R., Martin N. 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality. Mater. Des. 2016;96:106–114. doi: 10.1016/j.matdes.2016.02.018. DOI
Calì M., Pascoletti G., Gaeta M., Milazzo G., Ambu R. New Filaments with Natural Fillers for FDM 3D Printing and Their Applications in Biomedical Field. Procedia Manuf. 2020;51:698–703. doi: 10.1016/j.promfg.2020.10.098. DOI
Wang Z., Xu J., Lu Y., Hu L., Fan Y., Ma J., Zhou X. Preparation of 3D Printable Micro/Nanocellulose-Polylactic Acid (MNC/PLA) Composite Wire Rods with High MNC Constitution. Ind. Crops Prod. 2017;109:889–896. doi: 10.1016/j.indcrop.2017.09.061. DOI
Li T., Aspler J., Kingsland A., Cormier L.M., Zou X., 3rd Printing—A Review of Technologies, Markets, and Opportunities for the Forest Industry. J. Sci. Technol. For. Prod. Process. 2016;5:30.
Chacon J.M., Caminero M.A., Garcia-Plaza E., Nunez P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI
Ying S., Mengyun T., Zhijun R., Baohui S., Li C. An experimental investigation on the low-velocity impact response of carbon–aramid/epoxy hybrid composite laminates. J. Reinf. Plast. Compos. 2016;36:422–434. doi: 10.1177/0731684416680893. DOI
Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D. Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics. Mater. Des. 2010;31:3835–3844. doi: 10.1016/j.matdes.2010.03.033. DOI
Rafiq A., Merah N. Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J. Compos. Mater. 2018;53:143–154. doi: 10.1177/0021998318781220. DOI
Mishra R., Behera B.K. Novelties of 3-D woven composites and nanocomposites. J. Text. Inst. 2014;105:84–92. doi: 10.1080/00405000.2013.812266. DOI
Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018;133:112–121. doi: 10.1016/j.compositesb.2017.09.008. DOI
Fiore V., Valenza A., Di Bella G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J. Compos. Mater. 2012;46:2089–2096. doi: 10.1177/0021998311429884. DOI
Muñoz R., Martínez V., Sket F., González C., Llorca J. Mechanical behavior and failure micromechanisms of hybrid 3D woven composites in tension. Compos. Part A Appl. Sci. Manuf. 2014;59:93–104. doi: 10.1016/j.compositesa.2014.01.003. DOI