• This record comes from PubMed

Numerical and Experimental Analysis of Mechanical Properties in Hybrid Epoxy-Basalt Composites Partially Reinforced with Cellulosic Fillers

. 2023 Jul 08 ; 16 (14) : . [epub] 20230708

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
no. 2023:31140/1312/3111 Numerical and experimental analysis of hybrid composites partially reinforced with bio-fibers and fillers
no. 2022:31140/1312/3111 Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague, "Numerical modelling and computational analysis of lightweight composite structures in automotive components"

The current work is focused on numerical and experimental studies of woven fabric composites modified by hybridisation with biological (cellulosic) filler materials. The mechanical performance of the composites is characterized under tensile, bending and impact loads and the effect of hybridisation is observed with respect to pure and nonhybrid composites. Numerical models are developed using computational tools to predict mechanical performance under tensile loading. The computational prediction results are compared and validated with relevant experimental results. This research is aimed at understanding the mechanical performance of basalt-epoxy composites partially reinforced with micro-/nano-sized bio-fillers from cellulose and intended for various application areas. Different weave structures, e.g., plain, twill, matt, etc., were investigated with respect to the mechanical properties of the hybrid composites. The effects of hybridizing with cellulose particles and different weave patterns of the basalt fabric are studied. In general, the use of high-strength fibres such as basalt along with cellulosic fillers representing up to 3% of the total weight improves the mechanical performance of the hybrid structures. The thermomechanical performance of the hybrid composites improved significantly by using basalt fabric as well as by addition of 3% weight of cellulosic fillers. Results reveal the advantages of hybridisation and the inclusion of natural cellulosic fillers in the hybrid composite structures. The material developed is suitable for high-end applications in components for construction that demand advanced mechanical and thermomechanical performance. Furthermore, the inclusion of biodegradable fillers fulfills the objectives of sustainable and ecological construction materials.

See more in PubMed

Abrate S. Impact on Laminated Composites: Recent Advances. Appl. Mech. Rev. 1994;47:517–544. doi: 10.1115/1.3111065. DOI

Kretsis G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites. 1987;18:13–23. doi: 10.1016/0010-4361(87)90003-6. DOI

Wang J., Waas A.M., Wang H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos. Struct. 2013;96:298–311. doi: 10.1016/j.compstruct.2012.09.002. DOI

Güneş A., Şahin Ö.S. Investigation of the effect of surface crack on low-velocity impact response in hybrid laminated composite plates. J. Braz. Soc. Mech. Sci. Eng. 2020;42:348. doi: 10.1007/s40430-020-02422-2. DOI

Swolfs Y., Gorbatikh L., Verpoest I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014;67:181–200. doi: 10.1016/j.compositesa.2014.08.027. DOI

Tehrani-Dehkordi M., Nosraty H., Rajabzadeh M.-H. Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites. Fibers Polym. 2015;16:918–925. doi: 10.1007/s12221-015-0918-8. DOI

Simić M., Stavrakis A.K., Sinha A., Premčevski V., Markoski B., Stojanović G.M. Portable Respiration Monitoring System with an Embroidered Capacitive Facemask Sensor. Biosensors. 2022;12:339. doi: 10.3390/bios12050339. PubMed DOI PMC

Zhang D., Sun Y., Chen L., Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Des. 2013;50:750–756. doi: 10.1016/j.matdes.2013.03.044. DOI

Sarasini F., Tirillò J., Ferrante L., Valente M., Valente T., Lampani L., Gaudenzi P., Cioffi S., Iannace S., Sorrentino L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. Part B Eng. 2013;59:204–220. doi: 10.1016/j.compositesb.2013.12.006. DOI

Stavrakis A.K., Simić M., Stojanović G.M. Electrical Characterization of Conductive Threads for Textile Electronics. Electronics. 2021;10:967. doi: 10.3390/electronics10080967. DOI

Karataş M.A., Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. China Ordnance Soc. 2018;14:318–326. doi: 10.1016/j.dt.2018.02.001. DOI

Sinha A., Dhanjai, Stavrakis A.K., Stojanović G.M. Textile-based electrochemical sensors and their applications. Talanta. 2022;244:123425. doi: 10.1016/j.talanta.2022.123425. PubMed DOI

Stavrakis A.K., Simić M., Stojanović G.M. A Study of the Performance Degradation of Conductive Threads Based on the Effects of Tensile Forces and Repeated Washing. Polymers. 2022;14:4581. doi: 10.3390/polym14214581. PubMed DOI PMC

Sinha A., Stavrakis A.K., Simić M., Stojanović G.M. Polymer-Thread-Based Fully Textile Capacitive Sensor Embroidered on a Protective Face Mask for Humidity Detection. ACS Omega. 2022;7:44928–44938. doi: 10.1021/acsomega.2c05162. PubMed DOI PMC

Sinha A., Stavrakis A.K., Simić M., Stojanović G.M. Wearable humidity sensor embroidered on a commercial face mask and its electrical properties. J. Mater. Sci. 2023;58:1680–1693. doi: 10.1007/s10853-022-08135-2. PubMed DOI PMC

Jamshaid H., Mishra R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2015;107:923–937. doi: 10.1080/00405000.2015.1071940. DOI

Li Z., Xiao T., Zhao S. Effects of surface treatments on Mechanical properties of Continuous basalt fibre cords and their Adhesion with rubber matrix. Fibers Polym. 2016;17:910–916. doi: 10.1007/s12221-016-5928-7. DOI

Wang X., Hu B., Feng Y., Liang F., Mo J., Xiong J., Qiu Y. Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Compos. Sci. Technol. 2008;68:444–450. doi: 10.1016/j.compscitech.2007.06.016. DOI

Amuthakkannan P., Manikandan V., Jappes J.T.W., Uthayakumar M. Influence of stacking sequence on mechanical properties of basalt-jute fiber-reinforced polymer hybrid composites. J. Polym. Eng. 2012;32:547–554. doi: 10.1515/polyeng-2012-0063. DOI

Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman S., Chiyani M. High-Cycle Bending Fatigue Properties of Additive-Manufactured ABS and PLA Polymers Fabricated by Fused Deposition Modeling 3D-Printing. Forces Mech. 2021;3:100016. doi: 10.1016/j.finmec.2021.100016. DOI

Kariz M., Sernek M., Obućina M., Kuzman M.K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018;14:135–140. doi: 10.1016/j.mtcomm.2017.12.016. DOI

Yao T., Deng Z., Zhang K., Li S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. Part B Eng. 2019;163:393–402. doi: 10.1016/j.compositesb.2019.01.025. DOI

Daver F., Lee K.P.M., Brandt M., Shanks R. Cork–PLA Composite Filaments for Fused Deposition Modelling. Compos. Sci. Technol. 2018;168:230–237. doi: 10.1016/j.compscitech.2018.10.008. DOI

Tanikella N.G., Wittbrodt B., Pearce J.M. Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3D Printing. Addit. Manuf. 2017;15:40–47. doi: 10.1016/j.addma.2017.03.005. DOI

Tiwary V.K., Arunkumar P., Kulkarni P.M. Micro-Particle Grafted Eco-Friendly Polymer Filaments for 3D Printing Technology. Mater. Today Proc. 2020;28:1980–1984. doi: 10.1016/j.matpr.2020.05.573. DOI

Mishra R., Wiener J., Petru M., Novotna J. Bio-Composites Reinforced with Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties. Fiber Polym. 2020;21:619–627. doi: 10.1007/s12221-020-9804-0. DOI

Pincheira G., Canales C., Medina C., Fernández E., Flores P. Influence of aramid fibers on the mechanical behavior of a hybrid carbon–aramid–reinforced epoxy composite. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015;232:58–66. doi: 10.1177/1464420715612827. DOI

Baghaei B., Skrifvars M., Berglin L. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern. Compos. Part A Appl. Sci. Manuf. 2015;76:154–161. doi: 10.1016/j.compositesa.2015.05.029. DOI

Sezgin H., Berkalp O.B. The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. J. Ind. Text. 2016;47:283–296. doi: 10.1177/1528083716644290. DOI

Lee J.S., Kim J.W. Impact response of carbon fibre fabric/thermoset-thermoplastic combined polymer composites. Compos. Adv. Lett. 2017;26:82–88. doi: 10.1177/096369351702600304. DOI

Rajasekar B.R., Asokan R., Senbagan M., Karthika R., Sivajyothi K., Sharma N. Evaluation on mechanical properties of intra-ply hybrid carbon-aramid/epoxy composite laminates. Mater. Today Proc. 2018;5:25323–25330. doi: 10.1016/j.matpr.2018.10.335. DOI

Swolfs Y., McMeeking R.M., Verpoest I., Gorbatikh L. The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites. Compos. Part A Appl. Sci. Manuf. 2015;69:279–287. doi: 10.1016/j.compositesa.2014.12.001. DOI

Gomez C., Salvatori D., Caglar B., Trigueira R., Orange G., Michaud V. Resin Transfer molding of High-Fluidity Polyamide-6 with modified Glass-Fabric preforms. Compos. Part A Appl. Sci. Manuf. 2021;147:106448. doi: 10.1016/j.compositesa.2021.106448. DOI

Baek I., Lee S. A Study of Films Incorporating Magnetite Nanoparticles as Susceptors for Induction Welding of Carbon Fiber Reinforced Thermoplastic. Materials. 2020;13:318. doi: 10.3390/ma13020318. PubMed DOI PMC

Minchenkov K., Vedernikov A., Safonov A., Akhatov I. Thermoplastic Pultrusion: A Review. Polymers. 2021;13:180. doi: 10.3390/polym13020180. PubMed DOI PMC

Bandaru A.K., Sachan Y., Ahmad S., Alagirusamy R., Bhatnagar N. On the mechanical response of 2D plain woven and 3D angle-interlock fabrics. Compos. Part B Eng. 2017;118:135–148. doi: 10.1016/j.compositesb.2017.03.011. DOI

Minchenkov K., Vedernikov A., Kuzminova Y., Gusev S., Sulimov A., Gulyaev A., Kreslavskaya A., Prosyanoy I., Xian G., Akhatov I., et al. Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates. Compos. Commun. 2022;35:101281. doi: 10.1016/j.coco.2022.101281. DOI

Cerit A., Marti M.E., Soydal U., Kocaman S., Ahmetli G. Effect of Modification with Various Epoxide Compounds on Mechanical, Thermal, and Coating Properties of Epoxy Resin. Int. J. Polym. Sci. 2016;2016:4968365. doi: 10.1155/2016/4968365. DOI

Ahmetli G., Yazicigil Z., Soydal U. Modification of the epoxy resin with epoxide and ester group containing oligomers and compounds. Proc. Est. Acad. Sci. 2015;64:71–76. doi: 10.3176/proc.2015.1S.01. DOI

Subagia I.A., Sugita I.K.G., Wirawan I.K.G., Dwidiani N.M., Yuwono A.H.Y.A.H. Thermal Conductivity of Carbon/Basal Fiber Reinforced Epoxy Hybrid Composites. Int. J. Technol. 2017;8:1498–1506. doi: 10.14716/ijtech.v8i8.701. DOI

Vedernikov A., Minchenkov K., Gusev S., Sulimov A., Zhou P., Li C., Xian G., Akhatov I., Safonov A. Effects of the Pre-Consolidated Materials Manufacturing Method on the Mechanical Properties of Pultruded Thermoplastic Composites. Polymers. 2022;14:2246. doi: 10.3390/polym14112246. PubMed DOI PMC

Zhou P., Li C., Bai Y., Dong S., Xian G., Vedernikov A., Akhatov I., Safonov A., Yue Q. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications. Constr. Build. Mater. 2022;349:128694. doi: 10.1016/j.conbuildmat.2022.128694. DOI

Pavlovski D., Mislavsky B., Antonov A. CNG cylinder manufacturers test basalt fibre. Reinf. Plast. 2007;51:36–39. doi: 10.1016/S0034-3617(07)70152-2. DOI

Aji I.S., Zainudin E.S., Khalina A., Sapuan S.M., Khairul M.D., Sapuan M.S. Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J. Therm. Anal. Calorim. 2011;109:893–900. doi: 10.1007/s10973-011-1807-z. DOI

Banea M.D., de Sousa F.S.M., da Silva L.F.M., Campilho R.D.S.G., de Pereira A.M.B. Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive. J. Adhes. Sci. Technol. 2011;25:2461–2474. doi: 10.1163/016942411X580144. DOI

Muller M., Sleger V., Kolar V., Hromasova M., Pis D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC

Jarukumjorn K., Suppakarn N. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Compos. Part B Eng. 2009;40:623–627. doi: 10.1016/j.compositesb.2009.04.007. DOI

Sahu P., Gupta M. Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments. J. Reinf. Plast. Compos. 2017;36:1759–1780. doi: 10.1177/0731684417725584. DOI

Sen A.K., Kumar S. Coir-fiber-based fire retardant nano filler for epoxy composites. J. Therm. Anal. Calorim. 2010;101:265–271. doi: 10.1007/s10973-009-0637-8. DOI

Ayrilmis N., Buyuksari U., Dundar T. Waste Pine Cones as a Source of Reinforcing Fillers for Thermoplastic Composites. J. Appl. Polym. Sci. 2010;117:2324–2330. doi: 10.1002/app.32076. DOI

Ruggiero A., Valasek P., Mueller M. Exploitation of Waste Date Seeds Phoenix Dactylifera in Form of Polymeric Particle Biocomposite: Investigation on Adhesion, Cohesion. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI

Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2014.

Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2015.

Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International; West Conshohocken, PA, USA: 2020.

Pakkanen J., Manfredi D., Minetola P., Iuliano L. About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. In: Campana G., Howlett R.J., Setchi R., Cimatti B., editors. Sustainable Design and Manufacturing 2017. Springer International Publishing; Cham, Germany: 2017. pp. 776–785.

Zhao D.X., Cai X., Shou G.Z., Gu Y.Q., Wang P.X. Study on the Preparation of Bamboo Plastic Composite Intend for Additive Manufacturing. Key Eng. Mater. 2016;667:250–258. doi: 10.4028/www.scientific.net/KEM.667.250. DOI

Antonio Travieso-Rodriguez J., Zandi M.D., Jerez-Mesa R., Lluma-Fuentes J. Fatigue Behavior of PLA-Wood Composite Manufactured by Fused Filament Fabrication. J. Mater. Res. Technol. 2020;9:8507–8516. doi: 10.1016/j.jmrt.2020.06.003. DOI

Svatik J., Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Mencik P., Jancar J. PLA Toughening via Bamboo-Inspired 3D Printed Structural Design. Polym. Test. 2021;104:107405. doi: 10.1016/j.polymertesting.2021.107405. DOI

Correa D., Papadopoulou A., Guberan C., Jhaveri N., Reichert S., Menges A., Tibbits S. 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Print. Addit. Manuf. 2015;2:106–116. doi: 10.1089/3dp.2015.0022. DOI

Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 Nanoparticles on Basalt/Polysiloxane Composites: Mechanical and Thermal Characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI

Tucker C.L., Liang E. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol. 1999;59:655–671. doi: 10.1016/S0266-3538(98)00120-1. DOI

Halpin Affdl J.C., Kardos J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976;16:344–352. doi: 10.1002/pen.760160512. DOI

Budarapu P.R., Zhuang X., Rabczuk T., Bordas S.P. Multiscale modeling of material failure: Theory and computational methods. Adv. Appl. Mech. 2019;52:1–103. doi: 10.1016/bs.aams.2019.04.002. DOI

Behera B.K., Mishra R. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Tech. 2007;19:259–276. doi: 10.1108/09556220710819483. DOI

Behera B.K., Pattanayak A.K., Mishra R.K. Prediction of fabric drape behaviour using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI

Gama N., Ferreira A., Barros-Timmons A. 3D Printed Cork/Polyurethane Composite Foams. Mater. Des. 2019;179:107905. doi: 10.1016/j.matdes.2019.107905. DOI

Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-Cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI

Essassi K., Rebiere J.-L., El Mahi A., Ben Souf M.A., Bouguecha A., Haddar M. Experimental and Analytical Investigation of the Bending Behaviour of 3D-Printed Bio-Based Sandwich Structures Composites with Auxetic Core under Cyclic Fatigue Tests. Compos. Part A Appl. Sci. Manuf. 2020;131:105775. doi: 10.1016/j.compositesa.2020.105775. DOI

Yang T., Saati F., Horoshenkov K., Xiong X., Mishra R. Study on the sound absorption behavior of multi-component polyester nonwovens: Experimental and numerical methods. Text. Res. J. 2019;89:3342–3361. doi: 10.1177/0040517518811940. DOI

Ayrilmis N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI

Yang T., Xiong X., Mishra R., Novák J., Militký J. Acoustic evaluation of Struto nonwovens and their relationship with thermal properties. Text. Res. J. 2018;88:426–437. doi: 10.1177/0040517516681958. DOI

Huber T., Müssig J. Fibre Matrix Adhesion of Natural Fibres Cotton, Flax and Hemp in Polymeric Matrices Analyzed with the Single Fibre Fragmentation Test. Compos. Interfaces. 2008;15:335–349. doi: 10.1163/156855408783810948. DOI

Shahar F.S., Sultan M.T.H., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Shah A.U.M. Fatigue and Impact Properties of 3D Printed PLA Reinforced with Kenaf Particles. J. Mater. Res. Technol. 2022;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI

Yao T., Zhang K., Deng Z., Ye J. A Novel Generalized Stress Invariant-Based Strength Model for Inter-Layer Failure of FFF 3D Printing PLA Material. Mater. Des. 2020;193:108799. doi: 10.1016/j.matdes.2020.108799. DOI

Le Duigou A., Correa D., Ueda M., Matsuzaki R., Castro M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020;194:108911. doi: 10.1016/j.matdes.2020.108911. DOI

Arockiam A.J., Subramanian K., Padmanabhan R.G., Selvaraj R., Bagal D.K., Rajesh S. A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Mater. Today Proc. 2022;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI

Le Duigou A., Castro M., Bevan R., Martin N. 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality. Mater. Des. 2016;96:106–114. doi: 10.1016/j.matdes.2016.02.018. DOI

Calì M., Pascoletti G., Gaeta M., Milazzo G., Ambu R. New Filaments with Natural Fillers for FDM 3D Printing and Their Applications in Biomedical Field. Procedia Manuf. 2020;51:698–703. doi: 10.1016/j.promfg.2020.10.098. DOI

Wang Z., Xu J., Lu Y., Hu L., Fan Y., Ma J., Zhou X. Preparation of 3D Printable Micro/Nanocellulose-Polylactic Acid (MNC/PLA) Composite Wire Rods with High MNC Constitution. Ind. Crops Prod. 2017;109:889–896. doi: 10.1016/j.indcrop.2017.09.061. DOI

Li T., Aspler J., Kingsland A., Cormier L.M., Zou X., 3rd Printing—A Review of Technologies, Markets, and Opportunities for the Forest Industry. J. Sci. Technol. For. Prod. Process. 2016;5:30.

Chacon J.M., Caminero M.A., Garcia-Plaza E., Nunez P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI

Ying S., Mengyun T., Zhijun R., Baohui S., Li C. An experimental investigation on the low-velocity impact response of carbon–aramid/epoxy hybrid composite laminates. J. Reinf. Plast. Compos. 2016;36:422–434. doi: 10.1177/0731684416680893. DOI

Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D. Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics. Mater. Des. 2010;31:3835–3844. doi: 10.1016/j.matdes.2010.03.033. DOI

Rafiq A., Merah N. Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J. Compos. Mater. 2018;53:143–154. doi: 10.1177/0021998318781220. DOI

Mishra R., Behera B.K. Novelties of 3-D woven composites and nanocomposites. J. Text. Inst. 2014;105:84–92. doi: 10.1080/00405000.2013.812266. DOI

Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018;133:112–121. doi: 10.1016/j.compositesb.2017.09.008. DOI

Fiore V., Valenza A., Di Bella G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J. Compos. Mater. 2012;46:2089–2096. doi: 10.1177/0021998311429884. DOI

Muñoz R., Martínez V., Sket F., González C., Llorca J. Mechanical behavior and failure micromechanisms of hybrid 3D woven composites in tension. Compos. Part A Appl. Sci. Manuf. 2014;59:93–104. doi: 10.1016/j.compositesa.2014.01.003. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...