• This record comes from PubMed

Design, Development, and Characterization of Advanced Textile Structural Hollow Composites

. 2021 Oct 14 ; 13 (20) : . [epub] 20211014

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2021:31140/1312/3108 Internal grant agency of Faculty of Engineering no. 2021:31140/1312/3108 "Experimental research of hybrid adhesive bonds with multilayer sandwich construction, Czech University of Life Sciences Prague".

The research is focused on the design and development of woven textile-based structural hollow composites. E-Glass and high tenacity polyester multifilament yarns were used to produce various woven constructions. Yarn produced from cotton shoddy (fibers extracted from waste textiles) was used to develop hybrid preforms. In this study, unidirectional (UD), two-dimensional (2D), and three-dimensional (3D) fabric preforms were designed and developed. Further, 3D woven spacer fabric preforms with single-layer woven cross-links having four different geometrical shapes were produced. The performance of the woven cross-linked spacer structure was compared with the sandwich structure connected with the core pile yarns (SPY). Furthermore, three different types of cotton shoddy yarn-based fabric structures were developed. The first is unidirectional (UD), the second is 2D all-waste cotton fabric, and the third is a 2D hybrid fabric with waste cotton yarn in the warp and glass multifilament yarn in the weft. The UD, 2D, and 3D woven fabric-reinforced composites were produced using the vacuum-assisted resin infusion technique. The spacer woven structures were converted to composites by inserting wooden blocks with an appropriate size and wrapped with a Teflon sheet into the hollow space before resin application. A vacuum-assisted resin infusion technique was used to produce spacer woven composites. While changing the reinforcement from chopped fibers to 3D fabric, its modulus and ductility increase substantially. It was established that the number of crossover points in the weave structures offered excellent association with the impact energy absorption and formability behavior, which are important for many applications including automobiles, wind energy, marine and aerospace. Mechanical characterization of honeycomb composites with different cell sizes, opening angles and wall lengths revealed that the specific compression energy is higher for regular honeycomb structures with smaller cell sizes and a higher number of layers, keeping constant thickness.

See more in PubMed

Bannister M.K. Development and application of advanced textile composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2004;218:253–260. doi: 10.1177/146442070421800310. DOI

Karaduman N.S., Karaduman Y., Ozdemir H., Ozdemir G. Textiles for Advanced Applications. Intech Open; London, UK: 2017. Textile Reinforced Structural Composites for Advanced Applications. DOI

Behera B.K., Dash B.P. Mechanical behavior of 3D woven composites. Mater. Des. 2015;67:261–271. doi: 10.1016/j.matdes.2014.11.020. DOI

Patel D.K., Waas A.M., Yen C.F. Compressive response of hybrid 3D woven textile composites (H3DWTCs): An experimentally validated computational model. J. Mech. Phys. Solids. 2019;122:381–405. doi: 10.1016/j.jmps.2018.08.018. DOI

Dash A.K., Behera B.K. Weave design sspects of 3D textile preforms towards mechanical properties of their composites. Fibers Polym. 2019;20:2146–2155. doi: 10.1007/s12221-019-8841-z. DOI

Patel D.K., Waas A.M., Yen C.F. Direct numerical simulation of 3D woven textile composites subjected to tensile loading: An experimentally validated multiscale approach. Compos. Part B Eng. 2018;152:102–115. doi: 10.1016/j.compositesb.2018.06.012. DOI

Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI

Moshtaghian Z., Hasani H., Zarrebini M., Shirazi M.P. Development and auxetic characterization of 3D composites produced with newly-designed multi-cell flat-knitted spacer fabrics. J. Ind. Text. 2020:1528083720971696. doi: 10.1177/1528083720971696. DOI

Bunzel F., Wisner G., Stammen E., Dilger K. Structural sandwich composites out of wood foam core and textile reinforced concrete sheets for versatile and sustainable use in the building industry. Mater Today Proc. 2020;31:S296–S302. doi: 10.1016/j.matpr.2020.01.382. DOI

Manjunath R.N., Behera B.K., Mawkhlieng U. Flexural stability analysis of composite panels reinforced with stiffener integral woven preforms. J. Text. Inst. 2019;110:368–377. doi: 10.1080/00405000.2018.1480913. DOI

Torre L., Kenny J.M. Impact testing and simulation of composite sandwich structures for civil transportation. Compos. Struct. 2000;50:257–267. doi: 10.1016/S0263-8223(00)00101-X. DOI

Shin K.B., Lee J.Y., Cho S.H. An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus. Compos. Struct. 2008;84:228–240. doi: 10.1016/j.compstruct.2007.08.002. DOI

Tripathi L., Neje G., Behera B.K. Geometrical modeling of 3D woven honeycomb fabric for manufacturing of lightweight sandwich composite material. J. Ind. Text. 2020:152808372093147. doi: 10.1177/1528083720931472. DOI

Li D., Zhao C., Jiang N., Jiang L. Fabrication, properties and failure of 3D integrated woven spacer composites with thickened face sheets. Mater. Lett. 2015;148:103–105. doi: 10.1016/j.matlet.2015.02.058. DOI

Li D., Zhao C., Jiang L., Jiang N. Experimental study on the bending properties and failure mechanism of 3D integrated woven spacer composites at room and cryogenic temperature. Compos. Struct. 2014;111:56–65. doi: 10.1016/j.compstruct.2013.12.026. DOI

Kamble Z., Behera B.K., Mishra R., Behera P.K. Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fiber reinforced green composites. Compos. Part B Eng. 2021;207:1–10. doi: 10.1016/j.compositesb.2020.108595. DOI

Mouritz A.P., Bannister M.K., Falzon P.J., Leong K.H. Review of applications for advanced three-dimensional fiber textile composites. Compos. Part A Appl. Sci. Manuf. 1999;30:1445–1461. doi: 10.1016/S1359-835X(99)00034-2. DOI

Neje G., Behera B.K. Investigation of mechanical performance of 3D woven spacer sandwich composites with different cell geometries. Compos. Part B Eng. 2019;160:306–314. doi: 10.1016/j.compositesb.2018.10.036. DOI

Pirouzfar S., Zeinedin A. Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. Structures. 2021;33:2724–2738. doi: 10.1016/j.istruc.2021.06.033. DOI

Song S., Xiong C., Zheng J., Yin J., Zou Y., Zhu X. Compression, bending, energy absorption properties, and failure modes of composite Kagome honeycomb sandwich structure reinforced by PMI foams. Compos. Struct. 2021;277:114611. doi: 10.1016/j.compstruct.2021.114611. DOI

Manjunath R.N., Khatkar V., Behera B.K. Influence of augmented tuning of core architecture in 3D woven sandwich structures on flexural and compression properties of their composites. Adv. Compos. Mater. 2020;29:317–333. doi: 10.1080/09243046.2019.1680925. DOI

Fan H., Zhou Q., Yang W., Jingjing Z. An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading. Compos. Part B Eng. 2010;41:686–692. doi: 10.1016/j.compositesb.2010.07.004. DOI

Zhao C., Li D.S., Ge T.Q., Jiang L., Jiang N. Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites. Mater. Des. 2014;56:50–59. doi: 10.1016/j.matdes.2013.10.083. DOI

Vuure A.W., Ivens J.A., Verpoest I. Mechanical properties of composite panels based on woven sandwich-fabric preforms. Compos. Part A Appl. Sci. Manuf. 2000;31:671–680. doi: 10.1016/S1359-835X(00)00017-8. DOI

Karahan M., Ulcay Y., Eren R., Karahan N., Kaynak G. Investigation into the tensile properties of stitched and unstitched woven Aramid/Vinyl Ester composites. Text. Res. J. 2010;80:880–891. doi: 10.1177/0040517509346441. DOI

Ahmed K.S., Vijayarangan S. Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol. 2008;207:330–335. doi: 10.1016/j.jmatprotec.2008.06.038. DOI

Kamble Z., Behera B.K., Kimura T., Haruhiro I. Development and characterization of thermoset nanocomposites reinforced with cotton fibers recovered from textile waste. J. Ind. Text. 2020:1–27. doi: 10.1177/1528083720913535. DOI

Lee H., Kureemun U., Ravandi M., Teo W.S. Performance of interlaminar flax-carbon hybrids under bending. Procedia Manuf. 2020;43:658–665. doi: 10.1016/j.promfg.2020.02.134. DOI

Jawaid M., Abdul Khalil H.P.S., Abu Bakar A. Mechanical performance of oil palm empty fruit bunches/jute fibers reinforced epoxy hybrid composites. Mater. Sci. Eng. A. 2010;527:7944–7949. doi: 10.1016/j.msea.2010.09.005. DOI

Dau F., Dano M.L., Vérone B., Girardot J., Aboura Z., Morvan J.M. In-plane and out-of-plane characterization of a 3D angle interlock textile composite. Compos. Part A Appl. Sci. Manuf. 2021;149:106581. doi: 10.1016/j.compositesa.2021.106581. DOI

Liu T., Fan W., Wu X. Comparisons of influence of random defects on the impact compressive behavior of three different textile structural composites. Mater. Des. 2019;181:108073. doi: 10.1016/j.matdes.2019.108073. DOI

Ladani R.B., Wang C.H., Mouritz A.P. Delamination fatigue resistant three-dimensional textile self-healing composites. Compos. Part A Appl. Sci. Manuf. 2019;127:105626. doi: 10.1016/j.compositesa.2019.105626. DOI

Wondmagegnehu B.T., Paramasivam V., Selvaraj S.K. Fabricated and analyzed the mechanical properties of textile waste/glass fiber hybrid composite materiál. Mater. Today Proc. 2021;46:7297–7303. doi: 10.1016/j.matpr.2020.12.984. DOI

Zhang J., Zhang W., Huang S., Gu B. An experimental–numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures. Compos. Struct. 2021;268:113936. doi: 10.1016/j.compstruct.2021.113936. DOI

Flores-Johnson E.A., Li Q.M. Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core. Compos. Part B Eng. 2011;42:1212–1219. doi: 10.1016/j.compositesb.2011.02.013. DOI

Conejos F., Balmes E., Tranquart B., Monteiro E., Martin G. Viscoelastic homogenization of 3D woven composites with damping validation in temperature and verification of scale separation. Compos. Struct. 2021;275:114375. doi: 10.1016/j.compstruct.2021.114375. DOI

Yan S., Zeng X., Long A. Effect of fibre architecture on tensile pull-off behaviour of 3D woven composite T-joints. Compos. Struct. 2020;242:112194. doi: 10.1016/j.compstruct.2020.112194. DOI

Jiao W., Chen L., Xie J., Yang Z., Fang J., Chen L. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites. Compos. Struct. 2020;252:112756. doi: 10.1016/j.compstruct.2020.112756. DOI

Ruggles-Wrenn M.B., Alnatifat S.A. Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature. Polym. Testing. 2021;97:107179. doi: 10.1016/j.polymertesting.2021.107179. DOI

Nayak S.Y., Shenoy B.S., Sultan M.T.B., Kini C.R., Shenoy K.R., Acharya A., Jaideep J.R. Influence of stacking sequence on the mechanical properties of 3D E-glass/bamboo non-woven hybrid epoxy composites. Mater. Today Proc. 2021;38:2431–2438. doi: 10.1016/j.matpr.2020.07.385. DOI

Li Z., Li D., Zhu H., Guo Z., Jiang L. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method. Mater. Today Commun. 2020;22:100769. doi: 10.1016/j.mtcomm.2019.100769. DOI

Guo Q., Zhang Y., Guo R., Ma M., Chen L. Influences of weave parameters on the mechanical behavior and fracture mechanisms of multidirectional angle-interlock 3D woven composites. Mater. Today Commun. 2020;23:100886. doi: 10.1016/j.mtcomm.2019.100886. DOI

Zeng C., Liu L., Bian W., Leng J., Liu Y. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability. Compos. Struct. 2021;262:113626. doi: 10.1016/j.compstruct.2021.113626. DOI

Zheng T., Li S., Wang G., Hu Y., Zhao C. Mechanical and energy absorption properties of the composite XX-type lattice sandwich structure. Eur. J. Mech.-A/Solids. 2022;91:104410. doi: 10.1016/j.euromechsol.2021.104410. DOI

Chene D., Yan R., Lu X. Mechanical properties analysis of the naval ship similar model with an integrated sandwich composite superstructure. Ocean Eng. 2021;232:109101. doi: 10.1016/j.oceaneng.2021.109101. DOI

Reddy C.N., Rajeswari C., Malyadri T., Hari S.N.S. Effect of moisture absorption on the mechanical properties of jute/glass hybrid sandwich composites. Mater. Today Proc. 2021;45:3307–3311. doi: 10.1016/j.matpr.2020.12.639. DOI

Khalili S., Khalili S.M.R., Farsani R., Mahajan P. Flexural properties of sandwich composite panels with glass laminate aluminum reinforced epoxy facesheets strengthened by SMA wires. Polym. Testing. 2020;89:106641. doi: 10.1016/j.polymertesting.2020.106641. DOI

Flores-Johnson E.A., Li Q.M. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Compos. Struct. 2012;94:1555–1563. doi: 10.1016/j.compstruct.2011.12.017. DOI

Caglayan C., Gurkan I., Gungor S., Cebeci H. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites. Compos. Part A Appl. Sci. Manuf. 2018;115:187–195. doi: 10.1016/j.compositesa.2018.09.019. DOI

Bharath H.S., Bonthu D., Gururaj S., Prabhakar P., Doddamani M. Flexural response of 3D printed sandwich composite. Compos. Struct. 2021;263:113732. doi: 10.1016/j.compstruct.2021.113732. DOI

Nanayakkara A., Feih S., Mouritz A.P. Experimental analysis of the through-thickness compression properties of z-pinned sandwich composites. Compos. Part A Appl. Sci. Manuf. 2011;42:1673–1680. doi: 10.1016/j.compositesa.2011.07.020. DOI

Mishra R., Huang J., Kale B., Zhu G., Wang Y. The production, characterization and applications of nanoparticles in the textile industry. Text. Prog. 2014;46:133–226. doi: 10.1080/00405167.2014.964474. DOI

Wei X., Wu Q., Gao Y., Yang Q., Xiong J. Composite honeycomb sandwich columns under in-plane compression: Optimal geometrical design and three-dimensional failure mechanism maps. Eur. J. Mech.-A/Solids. 2022;91:104415. doi: 10.1016/j.euromechsol.2021.104415. DOI

Hassanzadeh S., Hasani H., Zarrebini M. Thermoset composites reinforced by innovative 3D spacer weft-knitted fabrics with different cross-section profiles: Materials and manufacturing process. Compos. Part A Appl. Sci. Manuf. 2016;91:65–76. doi: 10.1016/j.compositesa.2016.09.017. DOI

Guo J., Wen W., Zhang H., Cui H. Warp-loaded mechanical performance of 3D orthogonal layer-to-layer woven composite perforated structures with different apertures. Compos. Struct. 2021;278:114720. doi: 10.1016/j.compstruct.2021.114720. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Advances in Textile Structural Composites

. 2023 Feb 06 ; 15 (4) : . [epub] 20230206

Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler

. 2022 Mar 23 ; 14 (7) : . [epub] 20220323

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...