Design, Development, and Characterization of Advanced Textile Structural Hollow Composites
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2021:31140/1312/3108
Internal grant agency of Faculty of Engineering no. 2021:31140/1312/3108 "Experimental research of hybrid adhesive bonds with multilayer sandwich construction, Czech University of Life Sciences Prague".
PubMed
34685295
PubMed Central
PMC8538524
DOI
10.3390/polym13203535
PII: polym13203535
Knihovny.cz E-resources
- Keywords
- 3D weaving, compression, flexural rigidity, hollow structure, impact, sandwich, spacer fabric, textile structural composite, waste cotton, woven honeycomb,
- Publication type
- Journal Article MeSH
The research is focused on the design and development of woven textile-based structural hollow composites. E-Glass and high tenacity polyester multifilament yarns were used to produce various woven constructions. Yarn produced from cotton shoddy (fibers extracted from waste textiles) was used to develop hybrid preforms. In this study, unidirectional (UD), two-dimensional (2D), and three-dimensional (3D) fabric preforms were designed and developed. Further, 3D woven spacer fabric preforms with single-layer woven cross-links having four different geometrical shapes were produced. The performance of the woven cross-linked spacer structure was compared with the sandwich structure connected with the core pile yarns (SPY). Furthermore, three different types of cotton shoddy yarn-based fabric structures were developed. The first is unidirectional (UD), the second is 2D all-waste cotton fabric, and the third is a 2D hybrid fabric with waste cotton yarn in the warp and glass multifilament yarn in the weft. The UD, 2D, and 3D woven fabric-reinforced composites were produced using the vacuum-assisted resin infusion technique. The spacer woven structures were converted to composites by inserting wooden blocks with an appropriate size and wrapped with a Teflon sheet into the hollow space before resin application. A vacuum-assisted resin infusion technique was used to produce spacer woven composites. While changing the reinforcement from chopped fibers to 3D fabric, its modulus and ductility increase substantially. It was established that the number of crossover points in the weave structures offered excellent association with the impact energy absorption and formability behavior, which are important for many applications including automobiles, wind energy, marine and aerospace. Mechanical characterization of honeycomb composites with different cell sizes, opening angles and wall lengths revealed that the specific compression energy is higher for regular honeycomb structures with smaller cell sizes and a higher number of layers, keeping constant thickness.
See more in PubMed
Bannister M.K. Development and application of advanced textile composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2004;218:253–260. doi: 10.1177/146442070421800310. DOI
Karaduman N.S., Karaduman Y., Ozdemir H., Ozdemir G. Textiles for Advanced Applications. Intech Open; London, UK: 2017. Textile Reinforced Structural Composites for Advanced Applications. DOI
Behera B.K., Dash B.P. Mechanical behavior of 3D woven composites. Mater. Des. 2015;67:261–271. doi: 10.1016/j.matdes.2014.11.020. DOI
Patel D.K., Waas A.M., Yen C.F. Compressive response of hybrid 3D woven textile composites (H3DWTCs): An experimentally validated computational model. J. Mech. Phys. Solids. 2019;122:381–405. doi: 10.1016/j.jmps.2018.08.018. DOI
Dash A.K., Behera B.K. Weave design sspects of 3D textile preforms towards mechanical properties of their composites. Fibers Polym. 2019;20:2146–2155. doi: 10.1007/s12221-019-8841-z. DOI
Patel D.K., Waas A.M., Yen C.F. Direct numerical simulation of 3D woven textile composites subjected to tensile loading: An experimentally validated multiscale approach. Compos. Part B Eng. 2018;152:102–115. doi: 10.1016/j.compositesb.2018.06.012. DOI
Mishra R., Gupta N., Pachauri R., Behera B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI
Moshtaghian Z., Hasani H., Zarrebini M., Shirazi M.P. Development and auxetic characterization of 3D composites produced with newly-designed multi-cell flat-knitted spacer fabrics. J. Ind. Text. 2020:1528083720971696. doi: 10.1177/1528083720971696. DOI
Bunzel F., Wisner G., Stammen E., Dilger K. Structural sandwich composites out of wood foam core and textile reinforced concrete sheets for versatile and sustainable use in the building industry. Mater Today Proc. 2020;31:S296–S302. doi: 10.1016/j.matpr.2020.01.382. DOI
Manjunath R.N., Behera B.K., Mawkhlieng U. Flexural stability analysis of composite panels reinforced with stiffener integral woven preforms. J. Text. Inst. 2019;110:368–377. doi: 10.1080/00405000.2018.1480913. DOI
Torre L., Kenny J.M. Impact testing and simulation of composite sandwich structures for civil transportation. Compos. Struct. 2000;50:257–267. doi: 10.1016/S0263-8223(00)00101-X. DOI
Shin K.B., Lee J.Y., Cho S.H. An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus. Compos. Struct. 2008;84:228–240. doi: 10.1016/j.compstruct.2007.08.002. DOI
Tripathi L., Neje G., Behera B.K. Geometrical modeling of 3D woven honeycomb fabric for manufacturing of lightweight sandwich composite material. J. Ind. Text. 2020:152808372093147. doi: 10.1177/1528083720931472. DOI
Li D., Zhao C., Jiang N., Jiang L. Fabrication, properties and failure of 3D integrated woven spacer composites with thickened face sheets. Mater. Lett. 2015;148:103–105. doi: 10.1016/j.matlet.2015.02.058. DOI
Li D., Zhao C., Jiang L., Jiang N. Experimental study on the bending properties and failure mechanism of 3D integrated woven spacer composites at room and cryogenic temperature. Compos. Struct. 2014;111:56–65. doi: 10.1016/j.compstruct.2013.12.026. DOI
Kamble Z., Behera B.K., Mishra R., Behera P.K. Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fiber reinforced green composites. Compos. Part B Eng. 2021;207:1–10. doi: 10.1016/j.compositesb.2020.108595. DOI
Mouritz A.P., Bannister M.K., Falzon P.J., Leong K.H. Review of applications for advanced three-dimensional fiber textile composites. Compos. Part A Appl. Sci. Manuf. 1999;30:1445–1461. doi: 10.1016/S1359-835X(99)00034-2. DOI
Neje G., Behera B.K. Investigation of mechanical performance of 3D woven spacer sandwich composites with different cell geometries. Compos. Part B Eng. 2019;160:306–314. doi: 10.1016/j.compositesb.2018.10.036. DOI
Pirouzfar S., Zeinedin A. Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. Structures. 2021;33:2724–2738. doi: 10.1016/j.istruc.2021.06.033. DOI
Song S., Xiong C., Zheng J., Yin J., Zou Y., Zhu X. Compression, bending, energy absorption properties, and failure modes of composite Kagome honeycomb sandwich structure reinforced by PMI foams. Compos. Struct. 2021;277:114611. doi: 10.1016/j.compstruct.2021.114611. DOI
Manjunath R.N., Khatkar V., Behera B.K. Influence of augmented tuning of core architecture in 3D woven sandwich structures on flexural and compression properties of their composites. Adv. Compos. Mater. 2020;29:317–333. doi: 10.1080/09243046.2019.1680925. DOI
Fan H., Zhou Q., Yang W., Jingjing Z. An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading. Compos. Part B Eng. 2010;41:686–692. doi: 10.1016/j.compositesb.2010.07.004. DOI
Zhao C., Li D.S., Ge T.Q., Jiang L., Jiang N. Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites. Mater. Des. 2014;56:50–59. doi: 10.1016/j.matdes.2013.10.083. DOI
Vuure A.W., Ivens J.A., Verpoest I. Mechanical properties of composite panels based on woven sandwich-fabric preforms. Compos. Part A Appl. Sci. Manuf. 2000;31:671–680. doi: 10.1016/S1359-835X(00)00017-8. DOI
Karahan M., Ulcay Y., Eren R., Karahan N., Kaynak G. Investigation into the tensile properties of stitched and unstitched woven Aramid/Vinyl Ester composites. Text. Res. J. 2010;80:880–891. doi: 10.1177/0040517509346441. DOI
Ahmed K.S., Vijayarangan S. Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. Mater. Process. Technol. 2008;207:330–335. doi: 10.1016/j.jmatprotec.2008.06.038. DOI
Kamble Z., Behera B.K., Kimura T., Haruhiro I. Development and characterization of thermoset nanocomposites reinforced with cotton fibers recovered from textile waste. J. Ind. Text. 2020:1–27. doi: 10.1177/1528083720913535. DOI
Lee H., Kureemun U., Ravandi M., Teo W.S. Performance of interlaminar flax-carbon hybrids under bending. Procedia Manuf. 2020;43:658–665. doi: 10.1016/j.promfg.2020.02.134. DOI
Jawaid M., Abdul Khalil H.P.S., Abu Bakar A. Mechanical performance of oil palm empty fruit bunches/jute fibers reinforced epoxy hybrid composites. Mater. Sci. Eng. A. 2010;527:7944–7949. doi: 10.1016/j.msea.2010.09.005. DOI
Dau F., Dano M.L., Vérone B., Girardot J., Aboura Z., Morvan J.M. In-plane and out-of-plane characterization of a 3D angle interlock textile composite. Compos. Part A Appl. Sci. Manuf. 2021;149:106581. doi: 10.1016/j.compositesa.2021.106581. DOI
Liu T., Fan W., Wu X. Comparisons of influence of random defects on the impact compressive behavior of three different textile structural composites. Mater. Des. 2019;181:108073. doi: 10.1016/j.matdes.2019.108073. DOI
Ladani R.B., Wang C.H., Mouritz A.P. Delamination fatigue resistant three-dimensional textile self-healing composites. Compos. Part A Appl. Sci. Manuf. 2019;127:105626. doi: 10.1016/j.compositesa.2019.105626. DOI
Wondmagegnehu B.T., Paramasivam V., Selvaraj S.K. Fabricated and analyzed the mechanical properties of textile waste/glass fiber hybrid composite materiál. Mater. Today Proc. 2021;46:7297–7303. doi: 10.1016/j.matpr.2020.12.984. DOI
Zhang J., Zhang W., Huang S., Gu B. An experimental–numerical study on 3D angle-interlock woven composite under transverse impact at subzero temperatures. Compos. Struct. 2021;268:113936. doi: 10.1016/j.compstruct.2021.113936. DOI
Flores-Johnson E.A., Li Q.M. Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core. Compos. Part B Eng. 2011;42:1212–1219. doi: 10.1016/j.compositesb.2011.02.013. DOI
Conejos F., Balmes E., Tranquart B., Monteiro E., Martin G. Viscoelastic homogenization of 3D woven composites with damping validation in temperature and verification of scale separation. Compos. Struct. 2021;275:114375. doi: 10.1016/j.compstruct.2021.114375. DOI
Yan S., Zeng X., Long A. Effect of fibre architecture on tensile pull-off behaviour of 3D woven composite T-joints. Compos. Struct. 2020;242:112194. doi: 10.1016/j.compstruct.2020.112194. DOI
Jiao W., Chen L., Xie J., Yang Z., Fang J., Chen L. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites. Compos. Struct. 2020;252:112756. doi: 10.1016/j.compstruct.2020.112756. DOI
Ruggles-Wrenn M.B., Alnatifat S.A. Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature. Polym. Testing. 2021;97:107179. doi: 10.1016/j.polymertesting.2021.107179. DOI
Nayak S.Y., Shenoy B.S., Sultan M.T.B., Kini C.R., Shenoy K.R., Acharya A., Jaideep J.R. Influence of stacking sequence on the mechanical properties of 3D E-glass/bamboo non-woven hybrid epoxy composites. Mater. Today Proc. 2021;38:2431–2438. doi: 10.1016/j.matpr.2020.07.385. DOI
Li Z., Li D., Zhu H., Guo Z., Jiang L. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method. Mater. Today Commun. 2020;22:100769. doi: 10.1016/j.mtcomm.2019.100769. DOI
Guo Q., Zhang Y., Guo R., Ma M., Chen L. Influences of weave parameters on the mechanical behavior and fracture mechanisms of multidirectional angle-interlock 3D woven composites. Mater. Today Commun. 2020;23:100886. doi: 10.1016/j.mtcomm.2019.100886. DOI
Zeng C., Liu L., Bian W., Leng J., Liu Y. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability. Compos. Struct. 2021;262:113626. doi: 10.1016/j.compstruct.2021.113626. DOI
Zheng T., Li S., Wang G., Hu Y., Zhao C. Mechanical and energy absorption properties of the composite XX-type lattice sandwich structure. Eur. J. Mech.-A/Solids. 2022;91:104410. doi: 10.1016/j.euromechsol.2021.104410. DOI
Chene D., Yan R., Lu X. Mechanical properties analysis of the naval ship similar model with an integrated sandwich composite superstructure. Ocean Eng. 2021;232:109101. doi: 10.1016/j.oceaneng.2021.109101. DOI
Reddy C.N., Rajeswari C., Malyadri T., Hari S.N.S. Effect of moisture absorption on the mechanical properties of jute/glass hybrid sandwich composites. Mater. Today Proc. 2021;45:3307–3311. doi: 10.1016/j.matpr.2020.12.639. DOI
Khalili S., Khalili S.M.R., Farsani R., Mahajan P. Flexural properties of sandwich composite panels with glass laminate aluminum reinforced epoxy facesheets strengthened by SMA wires. Polym. Testing. 2020;89:106641. doi: 10.1016/j.polymertesting.2020.106641. DOI
Flores-Johnson E.A., Li Q.M. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Compos. Struct. 2012;94:1555–1563. doi: 10.1016/j.compstruct.2011.12.017. DOI
Caglayan C., Gurkan I., Gungor S., Cebeci H. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites. Compos. Part A Appl. Sci. Manuf. 2018;115:187–195. doi: 10.1016/j.compositesa.2018.09.019. DOI
Bharath H.S., Bonthu D., Gururaj S., Prabhakar P., Doddamani M. Flexural response of 3D printed sandwich composite. Compos. Struct. 2021;263:113732. doi: 10.1016/j.compstruct.2021.113732. DOI
Nanayakkara A., Feih S., Mouritz A.P. Experimental analysis of the through-thickness compression properties of z-pinned sandwich composites. Compos. Part A Appl. Sci. Manuf. 2011;42:1673–1680. doi: 10.1016/j.compositesa.2011.07.020. DOI
Mishra R., Huang J., Kale B., Zhu G., Wang Y. The production, characterization and applications of nanoparticles in the textile industry. Text. Prog. 2014;46:133–226. doi: 10.1080/00405167.2014.964474. DOI
Wei X., Wu Q., Gao Y., Yang Q., Xiong J. Composite honeycomb sandwich columns under in-plane compression: Optimal geometrical design and three-dimensional failure mechanism maps. Eur. J. Mech.-A/Solids. 2022;91:104415. doi: 10.1016/j.euromechsol.2021.104415. DOI
Hassanzadeh S., Hasani H., Zarrebini M. Thermoset composites reinforced by innovative 3D spacer weft-knitted fabrics with different cross-section profiles: Materials and manufacturing process. Compos. Part A Appl. Sci. Manuf. 2016;91:65–76. doi: 10.1016/j.compositesa.2016.09.017. DOI
Guo J., Wen W., Zhang H., Cui H. Warp-loaded mechanical performance of 3D orthogonal layer-to-layer woven composite perforated structures with different apertures. Compos. Struct. 2021;278:114720. doi: 10.1016/j.compstruct.2021.114720. DOI