Evaluation of Mechanical Properties and Filler Interaction in the Field of SLA Polymeric Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022:31140/1312/3105
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2022:31140/1312/3105: "Research on composite materials with polymer matrix and natural filler in the field of additive technology"
2023:31140/1312/3104
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2023:31140/1312/3104: "Development and testing of polymer composite materials with natural reinforcement"
PubMed
37512230
PubMed Central
PMC10383524
DOI
10.3390/ma16144955
PII: ma16144955
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, carbon filler, cotton filler, cyclic loading, low cycle test, polymer composite,
- Publikační typ
- časopisecké články MeSH
The paper deals with research focused on the use of fillers in the field of polymeric materials produced by additive technology SLA (stereolithography). The aim of the research is to evaluate 3D printing parameters, the mechanical properties (tensile strength, hardness), and the interaction of individual phases (polymer matrix and filler) in composite materials using SEM analysis. The tested fillers were cotton flakes and ground carbon fibres in different proportions. For the photosensitive resins, the use of cotton flakes as filler was found to have a positive effect on the mechanical properties not only under static but also under cyclic loading, which is a common cause of material failure in practice. The cyclic stress reference value was set at an amplitude of 5-50% of the maximum force required to break the pure resin in a static tensile test. A positive effect of fillers on the cyclic stress life of materials was demonstrated. The service life of pure resin was only 168 ± 29 cycles. The service life of materials with fillers increased to approximately 400 to 540 cycles for carbon fibre-based fillers and nearly 1000 cycles for cotton flake-based fillers, respectively. In this paper, new composite materials suitable for the use of SLA additive manufacturing techniques are presented. Research demonstrated the possibilities of adding cotton-based fillers in low-cost, commercially available resins. Furthermore, the importance of material research under cyclic loading was demonstrated.
Zobrazit více v PubMed
Cosmi F., Dal Maso A. A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Mater. Today Proc. 2020;32:194–201. doi: 10.1016/j.matpr.2020.04.602. DOI
Romero-Ocaña I., Delgado N.F., Molina S.I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing. Ind. Crops Prod. 2022;189:115832. doi: 10.1016/j.indcrop.2022.115832. DOI
Müller M., Jirků P., Šleger V., Mishra R.K., Hromasová M., Novotný J. Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material. Polymers. 2022;14:4930. doi: 10.3390/polym14224930. PubMed DOI PMC
Romero-Ocaña I., Molina S.I. Cork photocurable resin composite for stereolithography (SLA): Influence of cork particle size on mechanical and thermal properties. Addit. Manuf. 2022;51:102586. doi: 10.1016/j.addma.2021.102586. DOI
Urban J. Výzkum Mechanických Vlastností Polymerních Materiálů Vyrobených Aditivní Technologií. Czech University of Life Sciences; Prague, Czech: 2023.
Quagliato L., Yeon Kim S., Ryu S.C. Quasi-ductile to brittle transitional behavior and material properties gradient for additively manufactured SLA acrylate. Mater. Lett. 2022;329:133121. doi: 10.1016/j.matlet.2022.133121. DOI
Mukhtarkhanov M., Perveen A., Talamona D. Application of stereolithography based 3D printing technology in investment casting. Micromachines. 2020;11:946. doi: 10.3390/mi11100946. PubMed DOI PMC
El Moumen A., Tarfaoui M., Lafdi K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos. Part B Eng. 2019;171:166–182. doi: 10.1016/j.compositesb.2019.04.029. DOI
Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020;5:110–115. doi: 10.1016/j.bioactmat.2019.12.003. PubMed DOI PMC
Zhang S., Bhagia S., Li M., Meng X., Ragauskas A.J. Wood-reinforced composites by stereolithography with the stress whitening behavior. Mater. Des. 2021;206:109773. doi: 10.1016/j.matdes.2021.109773. DOI
Unkovskiy A., Bui P.H.B., Schille C., Geis-Gerstorfer J., Huettig F., Spintzyk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018;34:e324–e333. doi: 10.1016/j.dental.2018.09.011. PubMed DOI
Wu H., Fahy W.P., Kim S., Kim H., Zhao N., Pilato L., Kafi A., Bateman S., Koo J.H. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 2020;111:100638. doi: 10.1016/j.pmatsci.2020.100638. DOI
Yang T., Xiong X., Mishra R., Novák J. Acoustic evaluation of struto nonwovens and their relationship with thermal properties. Text. Res. J. 2018;88:426–437. doi: 10.1177/0040517516681958. DOI
Manapat J.Z., Chen Q., Ye P., Advincula R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017;302:1600553. doi: 10.1002/mame.201600553. DOI
Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002. DOI
Jagannathan N., Gururaja S., Manjunatha C.M. Matrix cracking in polymer matrix composites under bi-axial loading. Procedia Struct.Integr. 2019;14:864–871. doi: 10.1016/j.prostr.2019.07.065. DOI
Chen Y., Smith L.V. Ratcheting and recovery of adhesively bonded joints under tensile cyclic loading. Mech. Time-Depend. Mater. 2021;27:59–78. doi: 10.1007/s11043-021-09532-x. DOI
Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial ratchetting and low-cycle fatigue failure behaviors of adhesively bonded butt-joints under cyclic tension deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Hafiz T.A., Abdel Wahab M., Crocombe A.D., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Müller M., Šleger V., Kolář V., Hromasová M., Piš D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC
Ayrilmis N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI
Bhagia S., Bornani K., Agarwal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C.G., Zhao X., Kunc V., et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today. 2021;24:101078. doi: 10.1016/j.apmt.2021.101078. DOI
Plastics—Determination of Hardness—Part 1: Ball Indentation Method. ISO; Geneva, Switzerland: 2001.
Shahar F.S., Hameed Sultan M.T., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Md Shah A.U. Fatigue and Impact Properties of 3D Printed PLA reinforced with Kenaf particles. J. Mater. Res. Technol. 2021;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016;83:536–573. doi: 10.1016/j.pmatsci.2016.07.007. DOI
da Silva L.F.M., Öchsner A., Adams R.D. Handbook of Adhesion Technology. Springer; Berlin/Heidelberg, Germany: 2011.
Tao G., Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI
Xia Z., Shen X., Ellyin F. Biaxial cyclic deformation of an epoxy resin: Experiments and constitutive modeling. J. Mater. Sci. 2005;40:643–654. doi: 10.1007/s10853-005-6302-0. DOI
Broughton W.R., Mera R.D., Hinopoulos G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. National Physical Laboratory; Teddington, UK: 1999.
Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI
Yang D., Zhang H., Wu J., McCarthy E.D. Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: An experimental benchmark exercise. Addit. Manuf. 2021;37:101686. doi: 10.1016/j.addma.2020.101686. DOI
Alomayri T., Shaikh F., Low I.-M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI