Evaluation of Mechanical Properties and Filler Interaction in the Field of SLA Polymeric Additive Manufacturing

. 2023 Jul 12 ; 16 (14) : . [epub] 20230712

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37512230

Grantová podpora
2022:31140/1312/3105 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2022:31140/1312/3105: "Research on composite materials with polymer matrix and natural filler in the field of additive technology"
2023:31140/1312/3104 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2023:31140/1312/3104: "Development and testing of polymer composite materials with natural reinforcement"

The paper deals with research focused on the use of fillers in the field of polymeric materials produced by additive technology SLA (stereolithography). The aim of the research is to evaluate 3D printing parameters, the mechanical properties (tensile strength, hardness), and the interaction of individual phases (polymer matrix and filler) in composite materials using SEM analysis. The tested fillers were cotton flakes and ground carbon fibres in different proportions. For the photosensitive resins, the use of cotton flakes as filler was found to have a positive effect on the mechanical properties not only under static but also under cyclic loading, which is a common cause of material failure in practice. The cyclic stress reference value was set at an amplitude of 5-50% of the maximum force required to break the pure resin in a static tensile test. A positive effect of fillers on the cyclic stress life of materials was demonstrated. The service life of pure resin was only 168 ± 29 cycles. The service life of materials with fillers increased to approximately 400 to 540 cycles for carbon fibre-based fillers and nearly 1000 cycles for cotton flake-based fillers, respectively. In this paper, new composite materials suitable for the use of SLA additive manufacturing techniques are presented. Research demonstrated the possibilities of adding cotton-based fillers in low-cost, commercially available resins. Furthermore, the importance of material research under cyclic loading was demonstrated.

Zobrazit více v PubMed

Cosmi F., Dal Maso A. A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Mater. Today Proc. 2020;32:194–201. doi: 10.1016/j.matpr.2020.04.602. DOI

Romero-Ocaña I., Delgado N.F., Molina S.I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing. Ind. Crops Prod. 2022;189:115832. doi: 10.1016/j.indcrop.2022.115832. DOI

Müller M., Jirků P., Šleger V., Mishra R.K., Hromasová M., Novotný J. Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material. Polymers. 2022;14:4930. doi: 10.3390/polym14224930. PubMed DOI PMC

Romero-Ocaña I., Molina S.I. Cork photocurable resin composite for stereolithography (SLA): Influence of cork particle size on mechanical and thermal properties. Addit. Manuf. 2022;51:102586. doi: 10.1016/j.addma.2021.102586. DOI

Urban J. Výzkum Mechanických Vlastností Polymerních Materiálů Vyrobených Aditivní Technologií. Czech University of Life Sciences; Prague, Czech: 2023.

Quagliato L., Yeon Kim S., Ryu S.C. Quasi-ductile to brittle transitional behavior and material properties gradient for additively manufactured SLA acrylate. Mater. Lett. 2022;329:133121. doi: 10.1016/j.matlet.2022.133121. DOI

Mukhtarkhanov M., Perveen A., Talamona D. Application of stereolithography based 3D printing technology in investment casting. Micromachines. 2020;11:946. doi: 10.3390/mi11100946. PubMed DOI PMC

El Moumen A., Tarfaoui M., Lafdi K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos. Part B Eng. 2019;171:166–182. doi: 10.1016/j.compositesb.2019.04.029. DOI

Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020;5:110–115. doi: 10.1016/j.bioactmat.2019.12.003. PubMed DOI PMC

Zhang S., Bhagia S., Li M., Meng X., Ragauskas A.J. Wood-reinforced composites by stereolithography with the stress whitening behavior. Mater. Des. 2021;206:109773. doi: 10.1016/j.matdes.2021.109773. DOI

Unkovskiy A., Bui P.H.B., Schille C., Geis-Gerstorfer J., Huettig F., Spintzyk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018;34:e324–e333. doi: 10.1016/j.dental.2018.09.011. PubMed DOI

Wu H., Fahy W.P., Kim S., Kim H., Zhao N., Pilato L., Kafi A., Bateman S., Koo J.H. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 2020;111:100638. doi: 10.1016/j.pmatsci.2020.100638. DOI

Yang T., Xiong X., Mishra R., Novák J. Acoustic evaluation of struto nonwovens and their relationship with thermal properties. Text. Res. J. 2018;88:426–437. doi: 10.1177/0040517516681958. DOI

Manapat J.Z., Chen Q., Ye P., Advincula R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017;302:1600553. doi: 10.1002/mame.201600553. DOI

Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002. DOI

Jagannathan N., Gururaja S., Manjunatha C.M. Matrix cracking in polymer matrix composites under bi-axial loading. Procedia Struct.Integr. 2019;14:864–871. doi: 10.1016/j.prostr.2019.07.065. DOI

Chen Y., Smith L.V. Ratcheting and recovery of adhesively bonded joints under tensile cyclic loading. Mech. Time-Depend. Mater. 2021;27:59–78. doi: 10.1007/s11043-021-09532-x. DOI

Zhang J., Li H., Li H.Y., Wei X.L. Uniaxial ratchetting and low-cycle fatigue failure behaviors of adhesively bonded butt-joints under cyclic tension deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI

Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI

Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC

Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC

Hafiz T.A., Abdel Wahab M., Crocombe A.D., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI

Müller M., Šleger V., Kolář V., Hromasová M., Piš D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC

Ayrilmis N. Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI

Bhagia S., Bornani K., Agarwal R., Satlewal A., Ďurkovič J., Lagaňa R., Bhagia M., Yoo C.G., Zhao X., Kunc V., et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today. 2021;24:101078. doi: 10.1016/j.apmt.2021.101078. DOI

Plastics—Determination of Hardness—Part 1: Ball Indentation Method. ISO; Geneva, Switzerland: 2001.

Shahar F.S., Hameed Sultan M.T., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Md Shah A.U. Fatigue and Impact Properties of 3D Printed PLA reinforced with Kenaf particles. J. Mater. Res. Technol. 2021;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI

Awaja F., Zhang S., Tripathi M., Nikiforov A., Pugno N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016;83:536–573. doi: 10.1016/j.pmatsci.2016.07.007. DOI

da Silva L.F.M., Öchsner A., Adams R.D. Handbook of Adhesion Technology. Springer; Berlin/Heidelberg, Germany: 2011.

Tao G., Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI

Xia Z., Shen X., Ellyin F. Biaxial cyclic deformation of an epoxy resin: Experiments and constitutive modeling. J. Mater. Sci. 2005;40:643–654. doi: 10.1007/s10853-005-6302-0. DOI

Broughton W.R., Mera R.D., Hinopoulos G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. National Physical Laboratory; Teddington, UK: 1999.

Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI

Yang D., Zhang H., Wu J., McCarthy E.D. Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: An experimental benchmark exercise. Addit. Manuf. 2021;37:101686. doi: 10.1016/j.addma.2020.101686. DOI

Alomayri T., Shaikh F., Low I.-M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...