Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2019:31140/1312/313108
Internal grant agency of Faculty of Engineering CULS
PubMed
31261974
PubMed Central
PMC6680590
DOI
10.3390/polym11071106
PII: polym11071106
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, adhesive bonds, biofiller, chemical treatment, cyclic loading, epoxy resin, mechanical properties,
- Publikační typ
- časopisecké články MeSH
This paper deals with a research focused on utilization of microparticle and short-fiber filler based on cotton post-harvest line residues in an area of polymeric composites. Two different fractions of the biological filler (FCR-reinforced cotton filler) of 20 and 100 µm and the filler with short fibers of a length of 700 µm were used in the research. The aim of the research was to evaluate mechanical characteristics of composites and adhesive bonds for the purpose of gaining new pieces of knowledge which will be applicable in the area of material engineering and assessing application possibilities of residues coming into being from agricultural products processing. Mechanical properties of the composite material produced by a vacuum infusion and tested at temperatures 20, 40, and 60 °C and adhesive bonds which were exposed to a low-cyclic loading, i.e., 1000 cycles at 30% to 70% from reference value of the maximum strength, were evaluated. Composite systems with the FCR adjusted in 5% water solution of NaOH showed higher strength values on average compared to untreated FCR. Unsuitable size of the FCR led to a deterioration of the strength. The filler in the form of 700 FCR microfibers showed itself in a positive way to composite materials, and the particle in the form of 20 FCR did the same to adhesive bonds. Results of adhesive bond cyclic tests at higher stress values (70%) demonstrated viscoelastic behavior of the adhesive layer.
Zobrazit více v PubMed
Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI
Müller M., Valášek P., Rudawska A. Mechanical properties of adhesive bonds reinforced with biological fabric. J. Adhes. Sci. Technol. 2017;31:1859–1871. doi: 10.1080/01694243.2017.1285743. DOI
Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI
Yan L., Chouw N., Jayaraman K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014;56:296–317. doi: 10.1016/j.compositesb.2013.08.014. DOI
Valášek P., Ruggiero A., Müller M. Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos. Part B Eng. 2017;122:79–88. doi: 10.1016/j.compositesb.2017.04.014. DOI
Poole A.J., Church J.S., Huson M.G. Environmentally sustainable fibers from regenerated protein. Biomacromolecules. 2009;10:1–8. doi: 10.1021/bm8010648. PubMed DOI
Bajpai S.K., Mary G., Chand N. Biofiber Reinforcements in Composite Materials. Woodhead Publishing; Cambridge, UK: 2015. The use of cotton fibers as reinforcements in composites; pp. 320–341.
Otto G.P., Moisés M.P., Carvalho G., Rinaldi A.W., Garcia J.C., Radovanovic E., Fávaro S.L. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos. Part B Eng. 2017;110:459–465. doi: 10.1016/j.compositesb.2016.11.035. DOI
Battegazzore D., Frache A., Abt T., Maspoch M.L. Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Compos. Part B Eng. 2018;148:188–197. doi: 10.1016/j.compositesb.2018.04.055. DOI
Hrabě P., Müller M. Three-body Abrasive Wear of Polymer Matrix Composites Filled with Jatropha Curcas L. Procedia Eng. 2016;136:169–174. doi: 10.1016/j.proeng.2016.01.192. DOI
Feo L., Fraternali F., Skelton R.E. Special issue on composite lattices and multiscale innovative materials and structures. Compos. Part B Eng. 2017;15:1–2. doi: 10.1016/j.compositesb.2016.10.066. DOI
Tan H.S., Yu Y.Z., Liu L.L., Xing L.X. Effect of Alkali Treatment of Coir Fiber on Its Morphology and Performance of the Fiber/LLDPE Bio-Composites. Adv. Mater. Res. 2010;139–141:348–351. doi: 10.4028/www.scientific.net/AMR.139-141.348. DOI
Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI
Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI
Elsabbagh A., Steuernagel L., Ring J. Natural Fibre/PA6 composites with flame retardance properties: Extrusion and characterisation. Compos. Part B Eng. 2017;108:325–333. doi: 10.1016/j.compositesb.2016.10.012. DOI
Fowler P.A., Hughes J.M., Elias R.M. Biocomposites: Technology, environmental credentials and market forces. J. Sci. Food Agric. 2006;86:1781–1789. doi: 10.1002/jsfa.2558. DOI
Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI
Lu X., Zhang M.Q., Rong M.Z., Shi G., Yang G.C. Self-reinforced melt processable composites of sisal. Compos. Sci. Technol. 2003;63:177–186. doi: 10.1016/S0266-3538(02)00204-X. DOI
Alves C., Ferrão P.M.C., Silva A.J., Reis L.G., Freitas M., Rodrigues L.B., Alves D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010;18:313–327. doi: 10.1016/j.jclepro.2009.10.022. DOI
Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Rao K.M.M., Rao K.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007;77:288–295. doi: 10.1016/j.compstruct.2005.07.023. DOI
Munawar S.S., Umemura K., Kawai S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J. Wood Sci. 2007;53:108–113. doi: 10.1007/s10086-006-0836-x. DOI
De Andrade Silva F., Chawla N., de Toledo Filho R.D. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 2008;68:3438–3443. doi: 10.1016/j.compscitech.2008.10.001. DOI
Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI
Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.
Alomayri T., Shaikh F.U.A., Low I.M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI
Alomayri T., Shaikh F.U.A., Low I.M. Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites. Compos. Part B Eng. 2014;60:36–42. doi: 10.1016/j.compositesb.2013.12.036. DOI
Madyan O.A., Fan M., Feo L., Hui D. Enhancing mechanical properties of clay aerogel composites: An overview. Compos. Part B Eng. 2016;98:314–329. doi: 10.1016/j.compositesb.2016.04.059. DOI
Kahraman R., Sunar M., Yilbas B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J. Mater. Process. Technol. 2008;205:183–189. doi: 10.1016/j.jmatprotec.2007.11.121. DOI
Kim H.S., Khamis M.A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2001;32:1311–1317. doi: 10.1016/S1359-835X(01)00098-7. DOI
Agoudjil B., Ibos L., Majesté J.C., Candau Y., Mamunya Y.P. Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. Compos. Part A Appl. Sci. Manuf. 2008;39:342–351. doi: 10.1016/j.compositesa.2007.10.003. DOI
Halimi M.T., Hassen M.B., Sakli F. Cotton waste recycling: Quantitative and qualitative assessment. Resour. Conserv. Recycl. 2008;52:785–791. doi: 10.1016/j.resconrec.2007.11.009. DOI
Bajwa S.G., Bajwa D.S., Holt G., Coffelt T., Nakayama F. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Ind. Crops Prod. 2011;33:747–755. doi: 10.1016/j.indcrop.2011.01.017. DOI
Kim S.-J., Moon J.-B., Kim G.-H., Ha C.-S. Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym. Test. 2008;27:801–806. doi: 10.1016/j.polymertesting.2008.06.002. DOI
Hejjaji A., Zitoune R., Crouzeix L., Le Roux S., Collombet F. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear. 2017;376–377:1356–1364. doi: 10.1016/j.wear.2017.02.024. DOI
Riaz M., Nadeem R., Hanif M.A., Rasool N., Saeed R., Jilani M.I., Iqbal T., Zafar M. Kinetic and Equilibrium Modeling of Lead(II) Sorption onto Chemically Pretreated Gossypium hirsutum (Cotton) Leaves Waste Biomass. Asian J. Chem. 2013;25:1111–1116. doi: 10.14233/ajchem.2013.13610. DOI
Hou X., Sun F., Yan D., Xu H., Dong Z., Li Q., Yang Y. Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. J. Clean. Prod. 2014;83:454–462. doi: 10.1016/j.jclepro.2014.07.018. DOI
Haykir N.I., Bakir U. Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Ind. Crops Prod. 2013;51:408–414. doi: 10.1016/j.indcrop.2013.10.017. DOI
Adl M., Sheng K., Gharibi A. Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments. Appl. Energy. 2012;93:251–260. doi: 10.1016/j.apenergy.2011.11.065. DOI
Özdemir M., Bolgaz T., Saka C., Şahin Ö. Preparation and characterization of activated carbon from cotton stalks in a two-stage process. J. Anal. Appl. Pyrolysis. 2011;92:171–175. doi: 10.1016/j.jaap.2011.05.010. DOI
Coates W. Using cotton plant residue to produce briquettes. Biomass Bioenergy. 2000;18:201–208. doi: 10.1016/S0961-9534(99)00087-2. DOI
Algin H.M., Turgut P. Cotton and limestone powder wastes as brick material. Constr. Build. Mater. 2008;22:1074–1080. doi: 10.1016/j.conbuildmat.2007.03.006. DOI
Wu H., Liang X., Huang L., Xie Y., Tan S., Cai X. The utilization of cotton stalk bark to reinforce the mechanical and thermal properties of bio-flour plastic composites. Constr. Build. Mater. 2016;118:337–343. doi: 10.1016/j.conbuildmat.2016.02.095. DOI
Del Mar Barbero-Barrera M., Pombo O., de los Angeles Navacerrada M. Textile fibre waste bindered with natural hydraulic lime. Compos. Part B Eng. 2016;94:26–33. doi: 10.1016/j.compositesb.2016.03.013. DOI
Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI
Komuraiah A., Kumar N.S., Prasad B.D. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014;50:359–376. doi: 10.1007/s11029-014-9422-2. DOI
Petrucci R., Nisini E., Puglia D., Sarasini F., Rallini M., Santulli C., Minak G., Kenny J.M. Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates. Compos. Part B Eng. 2015;81:84–90. doi: 10.1016/j.compositesb.2015.07.005. DOI
Bajracharya R.M., Bajwa D.S., Bajwa S.G. Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Eng. 2017;200:370–376. doi: 10.1016/j.proeng.2017.07.052. DOI
Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI
Hassabo A.G., Salama M., Mohamed A.L., Popescu C. Ultrafine Wool and Cotton Powder and Their Characteristics. J. Nat. Fibers. 2015;12:141–153. doi: 10.1080/15440478.2014.903819. DOI
Satheesh Kumar M.N., Yaakob Z., Mohan N., Siddaramaiah, Kumaresh Babu S.P. Mechanical and Abrasive Wear Studies on Biobased Jatropha Oil Cake Incorporated Glass–Epoxy Composites. J. Am. Oil Chem. Soc. 2010;87:929–936. doi: 10.1007/s11746-010-1575-0. DOI
Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
Kolar V., Muller M. Research on Influence of Polyurethane Adhesive Modified by Polyurethane Filler Based on Recyclate. Manuf. Technol. 2018;18:418–423. doi: 10.21062/ujep/115.2018/a/1213-2489/MT/18/3/418. DOI
Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.
Šleger V., Müller M. Low-cyclic fatigue of adhesive bonds. Manuf. Technol. 2016;16:1151–1157.
Debnath S., Ranade R., Wunder S.L., McCool J., Boberick K., Baran G. Interface effects on mechanical properties of particle-reinforced composites. Dent. Mater. 2004;20:677–686. doi: 10.1016/j.dental.2003.12.001. PubMed DOI
De S.K., White J.R. Short Fibre-Polymer Composites. Woodhead Pub; Cambridge, UK: 1996.
Mallick P.K. Comprehensive Composite Materials II. Elsevier; Amsterdam, The Netherlands: 2015. 2.18 Particulate Filled and Short Fiber Reinforced Polymer Composites; pp. 360–400.
Havel Composites Epoxid Resin LH 288 Dostupné Z. [(accessed on 5 June 2019)]; Available online: https://www.havel-composites.com/uploads/files/products/3179/c54daa2d15a93461add332418c073086893dc107.pdf.
Havel Composites Hardener H 282 Dostupné Z. [(accessed on 5 June 2019)]; Available online: https://www.havel-composites.com/uploads/files/products/3188/6461f3270208796c172cb8b7a06b68dbc9879548.pdf.
International Organization for Standardization . ČSN EN ISO 3167—Plastics—Multipurpose Test Specimens. Czech Standardization Institute; Prague, Czech Republic: 2014.
Müller M., Valášek P., Novotný J., Ruggiero A., D’Amato R., Habrová K. Lecture Notes in Mechanical Engineering. Springer; Cham, Germany: 2019. Research on water jet cutting of polymer composites based on epoxy/waste fibres from coconut processing; pp. 45–53.
Müller M., Valášek P., Kolář V. Research on application of technology using water jet on machining of polymeric composite biological-reinforced materials. Manuf. Technol. 2018;18:630–634. doi: 10.21062/ujep/151.2018/a/1213-2489/MT/18/4/630. DOI
International Organization for Standardization . ČSN EN ISO 527—Plastics-Determination of Tensile Properties—Part 1: General Principles. Czech Standardization Institute; Prague, Czech Republic: 2012.
International Organization for Standardization . ČSN EN 1465—Multipurpose Test Specimens. Czech Standardization Institute; Prague, Czech Republic: 2009.
Nakamura Y., Yamaguchi M., Okubo M., Matsumoto T. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J. Appl. Polym. Sci. 1992;45:1281–1289. doi: 10.1002/app.1992.070450716. DOI
Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl. Surf. Sci. 2017;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI
Cheung H.Y., Ho M.P., Lau K.T., Cardona F., Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009;40:655–663. doi: 10.1016/j.compositesb.2009.04.014. DOI
Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 2009;30:3931–3934. doi: 10.1016/j.matdes.2009.01.035. DOI
Herrera-Franco P.J., Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI
Alkbir M.F.M., Sapuan S.M., Nuraini A.A., Ishak M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI
Dalmay P., Smith A., Chotard T., Sahay-Turner P., Gloaguen V., Krausz P. Properties of cellulosic fibre reinforced plaster: Influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 2010;45:793–803. doi: 10.1007/s10853-009-4002-x. DOI
Vrbka J. Mechanika Kmpozitů Dostupné Z. [(accessed on 10 December 2018)]; Available online: https://www.vutbr.cz/www_base/priloha.php?dpid=83340.
Broughton W.R., Mera R.D., Hinopoulos G. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999 Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. NPL Rep. CMMT (A) 1999;191:1996–1999.
Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.
Hafiz T.A., Abdel Wahab M.M., Crocombe A.D., Smith P.A. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Šleger V., Müller M. Quasi Static Tests of Adhesive Bonds of Alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698.
Cho J., Joshi M.S., Sun C.T. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 2006;66:1941–1952. doi: 10.1016/j.compscitech.2005.12.028. DOI
Rudawska A. Surface Free Energy and 7075 Aluminium Bonded Joint Strength Following Degreasing Only and Without Any Prior Treatment. J. Adhes. Sci. Technol. 2012;26:1233–1247.
Dányádi L., Renner K., Szabó Z., Nagy G., Móczó J., Pukánszky B. Wood flour filled PP composites: Adhesion, deformation, failure. Polym. Adv. Technol. 2006;17:967–974. doi: 10.1002/pat.838. DOI
Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler
Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer