Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites

. 2019 Jun 29 ; 11 (7) : . [epub] 20190629

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31261974

Grantová podpora
2019:31140/1312/313108 Internal grant agency of Faculty of Engineering CULS

This paper deals with a research focused on utilization of microparticle and short-fiber filler based on cotton post-harvest line residues in an area of polymeric composites. Two different fractions of the biological filler (FCR-reinforced cotton filler) of 20 and 100 µm and the filler with short fibers of a length of 700 µm were used in the research. The aim of the research was to evaluate mechanical characteristics of composites and adhesive bonds for the purpose of gaining new pieces of knowledge which will be applicable in the area of material engineering and assessing application possibilities of residues coming into being from agricultural products processing. Mechanical properties of the composite material produced by a vacuum infusion and tested at temperatures 20, 40, and 60 °C and adhesive bonds which were exposed to a low-cyclic loading, i.e., 1000 cycles at 30% to 70% from reference value of the maximum strength, were evaluated. Composite systems with the FCR adjusted in 5% water solution of NaOH showed higher strength values on average compared to untreated FCR. Unsuitable size of the FCR led to a deterioration of the strength. The filler in the form of 700 FCR microfibers showed itself in a positive way to composite materials, and the particle in the form of 20 FCR did the same to adhesive bonds. Results of adhesive bond cyclic tests at higher stress values (70%) demonstrated viscoelastic behavior of the adhesive layer.

Zobrazit více v PubMed

Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI

Müller M., Valášek P., Rudawska A. Mechanical properties of adhesive bonds reinforced with biological fabric. J. Adhes. Sci. Technol. 2017;31:1859–1871. doi: 10.1080/01694243.2017.1285743. DOI

Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI

Yan L., Chouw N., Jayaraman K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014;56:296–317. doi: 10.1016/j.compositesb.2013.08.014. DOI

Valášek P., Ruggiero A., Müller M. Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos. Part B Eng. 2017;122:79–88. doi: 10.1016/j.compositesb.2017.04.014. DOI

Poole A.J., Church J.S., Huson M.G. Environmentally sustainable fibers from regenerated protein. Biomacromolecules. 2009;10:1–8. doi: 10.1021/bm8010648. PubMed DOI

Bajpai S.K., Mary G., Chand N. Biofiber Reinforcements in Composite Materials. Woodhead Publishing; Cambridge, UK: 2015. The use of cotton fibers as reinforcements in composites; pp. 320–341.

Otto G.P., Moisés M.P., Carvalho G., Rinaldi A.W., Garcia J.C., Radovanovic E., Fávaro S.L. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos. Part B Eng. 2017;110:459–465. doi: 10.1016/j.compositesb.2016.11.035. DOI

Battegazzore D., Frache A., Abt T., Maspoch M.L. Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Compos. Part B Eng. 2018;148:188–197. doi: 10.1016/j.compositesb.2018.04.055. DOI

Hrabě P., Müller M. Three-body Abrasive Wear of Polymer Matrix Composites Filled with Jatropha Curcas L. Procedia Eng. 2016;136:169–174. doi: 10.1016/j.proeng.2016.01.192. DOI

Feo L., Fraternali F., Skelton R.E. Special issue on composite lattices and multiscale innovative materials and structures. Compos. Part B Eng. 2017;15:1–2. doi: 10.1016/j.compositesb.2016.10.066. DOI

Tan H.S., Yu Y.Z., Liu L.L., Xing L.X. Effect of Alkali Treatment of Coir Fiber on Its Morphology and Performance of the Fiber/LLDPE Bio-Composites. Adv. Mater. Res. 2010;139–141:348–351. doi: 10.4028/www.scientific.net/AMR.139-141.348. DOI

Müller M., Valášek P., Ruggiero A. Strength characteristics of untreated short-fibre composites from the plant ensete ventricosum. BioResources. 2017;12:255–269. doi: 10.15376/biores.12.1.255-269. DOI

Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI

Elsabbagh A., Steuernagel L., Ring J. Natural Fibre/PA6 composites with flame retardance properties: Extrusion and characterisation. Compos. Part B Eng. 2017;108:325–333. doi: 10.1016/j.compositesb.2016.10.012. DOI

Fowler P.A., Hughes J.M., Elias R.M. Biocomposites: Technology, environmental credentials and market forces. J. Sci. Food Agric. 2006;86:1781–1789. doi: 10.1002/jsfa.2558. DOI

Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI

Lu X., Zhang M.Q., Rong M.Z., Shi G., Yang G.C. Self-reinforced melt processable composites of sisal. Compos. Sci. Technol. 2003;63:177–186. doi: 10.1016/S0266-3538(02)00204-X. DOI

Alves C., Ferrão P.M.C., Silva A.J., Reis L.G., Freitas M., Rodrigues L.B., Alves D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010;18:313–327. doi: 10.1016/j.jclepro.2009.10.022. DOI

Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Rao K.M.M., Rao K.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007;77:288–295. doi: 10.1016/j.compstruct.2005.07.023. DOI

Munawar S.S., Umemura K., Kawai S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J. Wood Sci. 2007;53:108–113. doi: 10.1007/s10086-006-0836-x. DOI

De Andrade Silva F., Chawla N., de Toledo Filho R.D. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 2008;68:3438–3443. doi: 10.1016/j.compscitech.2008.10.001. DOI

Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI

Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.

Alomayri T., Shaikh F.U.A., Low I.M. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B Eng. 2013;50:1–6. doi: 10.1016/j.compositesb.2013.01.013. DOI

Alomayri T., Shaikh F.U.A., Low I.M. Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites. Compos. Part B Eng. 2014;60:36–42. doi: 10.1016/j.compositesb.2013.12.036. DOI

Madyan O.A., Fan M., Feo L., Hui D. Enhancing mechanical properties of clay aerogel composites: An overview. Compos. Part B Eng. 2016;98:314–329. doi: 10.1016/j.compositesb.2016.04.059. DOI

Kahraman R., Sunar M., Yilbas B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J. Mater. Process. Technol. 2008;205:183–189. doi: 10.1016/j.jmatprotec.2007.11.121. DOI

Kim H.S., Khamis M.A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2001;32:1311–1317. doi: 10.1016/S1359-835X(01)00098-7. DOI

Agoudjil B., Ibos L., Majesté J.C., Candau Y., Mamunya Y.P. Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. Compos. Part A Appl. Sci. Manuf. 2008;39:342–351. doi: 10.1016/j.compositesa.2007.10.003. DOI

Halimi M.T., Hassen M.B., Sakli F. Cotton waste recycling: Quantitative and qualitative assessment. Resour. Conserv. Recycl. 2008;52:785–791. doi: 10.1016/j.resconrec.2007.11.009. DOI

Bajwa S.G., Bajwa D.S., Holt G., Coffelt T., Nakayama F. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Ind. Crops Prod. 2011;33:747–755. doi: 10.1016/j.indcrop.2011.01.017. DOI

Kim S.-J., Moon J.-B., Kim G.-H., Ha C.-S. Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym. Test. 2008;27:801–806. doi: 10.1016/j.polymertesting.2008.06.002. DOI

Hejjaji A., Zitoune R., Crouzeix L., Le Roux S., Collombet F. Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear. 2017;376–377:1356–1364. doi: 10.1016/j.wear.2017.02.024. DOI

Riaz M., Nadeem R., Hanif M.A., Rasool N., Saeed R., Jilani M.I., Iqbal T., Zafar M. Kinetic and Equilibrium Modeling of Lead(II) Sorption onto Chemically Pretreated Gossypium hirsutum (Cotton) Leaves Waste Biomass. Asian J. Chem. 2013;25:1111–1116. doi: 10.14233/ajchem.2013.13610. DOI

Hou X., Sun F., Yan D., Xu H., Dong Z., Li Q., Yang Y. Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. J. Clean. Prod. 2014;83:454–462. doi: 10.1016/j.jclepro.2014.07.018. DOI

Haykir N.I., Bakir U. Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Ind. Crops Prod. 2013;51:408–414. doi: 10.1016/j.indcrop.2013.10.017. DOI

Adl M., Sheng K., Gharibi A. Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments. Appl. Energy. 2012;93:251–260. doi: 10.1016/j.apenergy.2011.11.065. DOI

Özdemir M., Bolgaz T., Saka C., Şahin Ö. Preparation and characterization of activated carbon from cotton stalks in a two-stage process. J. Anal. Appl. Pyrolysis. 2011;92:171–175. doi: 10.1016/j.jaap.2011.05.010. DOI

Coates W. Using cotton plant residue to produce briquettes. Biomass Bioenergy. 2000;18:201–208. doi: 10.1016/S0961-9534(99)00087-2. DOI

Algin H.M., Turgut P. Cotton and limestone powder wastes as brick material. Constr. Build. Mater. 2008;22:1074–1080. doi: 10.1016/j.conbuildmat.2007.03.006. DOI

Wu H., Liang X., Huang L., Xie Y., Tan S., Cai X. The utilization of cotton stalk bark to reinforce the mechanical and thermal properties of bio-flour plastic composites. Constr. Build. Mater. 2016;118:337–343. doi: 10.1016/j.conbuildmat.2016.02.095. DOI

Del Mar Barbero-Barrera M., Pombo O., de los Angeles Navacerrada M. Textile fibre waste bindered with natural hydraulic lime. Compos. Part B Eng. 2016;94:26–33. doi: 10.1016/j.compositesb.2016.03.013. DOI

Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI

Komuraiah A., Kumar N.S., Prasad B.D. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014;50:359–376. doi: 10.1007/s11029-014-9422-2. DOI

Petrucci R., Nisini E., Puglia D., Sarasini F., Rallini M., Santulli C., Minak G., Kenny J.M. Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates. Compos. Part B Eng. 2015;81:84–90. doi: 10.1016/j.compositesb.2015.07.005. DOI

Bajracharya R.M., Bajwa D.S., Bajwa S.G. Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Eng. 2017;200:370–376. doi: 10.1016/j.proeng.2017.07.052. DOI

Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI

Hassabo A.G., Salama M., Mohamed A.L., Popescu C. Ultrafine Wool and Cotton Powder and Their Characteristics. J. Nat. Fibers. 2015;12:141–153. doi: 10.1080/15440478.2014.903819. DOI

Satheesh Kumar M.N., Yaakob Z., Mohan N., Siddaramaiah, Kumaresh Babu S.P. Mechanical and Abrasive Wear Studies on Biobased Jatropha Oil Cake Incorporated Glass–Epoxy Composites. J. Am. Oil Chem. Soc. 2010;87:929–936. doi: 10.1007/s11746-010-1575-0. DOI

Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

Kolar V., Muller M. Research on Influence of Polyurethane Adhesive Modified by Polyurethane Filler Based on Recyclate. Manuf. Technol. 2018;18:418–423. doi: 10.21062/ujep/115.2018/a/1213-2489/MT/18/3/418. DOI

Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.

Šleger V., Müller M. Low-cyclic fatigue of adhesive bonds. Manuf. Technol. 2016;16:1151–1157.

Debnath S., Ranade R., Wunder S.L., McCool J., Boberick K., Baran G. Interface effects on mechanical properties of particle-reinforced composites. Dent. Mater. 2004;20:677–686. doi: 10.1016/j.dental.2003.12.001. PubMed DOI

De S.K., White J.R. Short Fibre-Polymer Composites. Woodhead Pub; Cambridge, UK: 1996.

Mallick P.K. Comprehensive Composite Materials II. Elsevier; Amsterdam, The Netherlands: 2015. 2.18 Particulate Filled and Short Fiber Reinforced Polymer Composites; pp. 360–400.

Havel Composites Epoxid Resin LH 288 Dostupné Z. [(accessed on 5 June 2019)]; Available online: https://www.havel-composites.com/uploads/files/products/3179/c54daa2d15a93461add332418c073086893dc107.pdf.

Havel Composites Hardener H 282 Dostupné Z. [(accessed on 5 June 2019)]; Available online: https://www.havel-composites.com/uploads/files/products/3188/6461f3270208796c172cb8b7a06b68dbc9879548.pdf.

International Organization for Standardization . ČSN EN ISO 3167—Plastics—Multipurpose Test Specimens. Czech Standardization Institute; Prague, Czech Republic: 2014.

Müller M., Valášek P., Novotný J., Ruggiero A., D’Amato R., Habrová K. Lecture Notes in Mechanical Engineering. Springer; Cham, Germany: 2019. Research on water jet cutting of polymer composites based on epoxy/waste fibres from coconut processing; pp. 45–53.

Müller M., Valášek P., Kolář V. Research on application of technology using water jet on machining of polymeric composite biological-reinforced materials. Manuf. Technol. 2018;18:630–634. doi: 10.21062/ujep/151.2018/a/1213-2489/MT/18/4/630. DOI

International Organization for Standardization . ČSN EN ISO 527—Plastics-Determination of Tensile Properties—Part 1: General Principles. Czech Standardization Institute; Prague, Czech Republic: 2012.

International Organization for Standardization . ČSN EN 1465—Multipurpose Test Specimens. Czech Standardization Institute; Prague, Czech Republic: 2009.

Nakamura Y., Yamaguchi M., Okubo M., Matsumoto T. Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J. Appl. Polym. Sci. 1992;45:1281–1289. doi: 10.1002/app.1992.070450716. DOI

Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI

Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl. Surf. Sci. 2017;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI

Cheung H.Y., Ho M.P., Lau K.T., Cardona F., Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009;40:655–663. doi: 10.1016/j.compositesb.2009.04.014. DOI

Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 2009;30:3931–3934. doi: 10.1016/j.matdes.2009.01.035. DOI

Herrera-Franco P.J., Valadez-González A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001. DOI

Alkbir M.F.M., Sapuan S.M., Nuraini A.A., Ishak M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016;148:59–73. doi: 10.1016/j.compstruct.2016.01.098. DOI

Dalmay P., Smith A., Chotard T., Sahay-Turner P., Gloaguen V., Krausz P. Properties of cellulosic fibre reinforced plaster: Influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 2010;45:793–803. doi: 10.1007/s10853-009-4002-x. DOI

Vrbka J. Mechanika Kmpozitů Dostupné Z. [(accessed on 10 December 2018)]; Available online: https://www.vutbr.cz/www_base/priloha.php?dpid=83340.

Broughton W.R., Mera R.D., Hinopoulos G. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999 Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. NPL Rep. CMMT (A) 1999;191:1996–1999.

Messler R.W. Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Elsevier; Amsterdam, The Netherlands: 2004.

Hafiz T.A., Abdel Wahab M.M., Crocombe A.D., Smith P.A. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI

Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI

Šleger V., Müller M. Quasi Static Tests of Adhesive Bonds of Alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698.

Cho J., Joshi M.S., Sun C.T. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 2006;66:1941–1952. doi: 10.1016/j.compscitech.2005.12.028. DOI

Rudawska A. Surface Free Energy and 7075 Aluminium Bonded Joint Strength Following Degreasing Only and Without Any Prior Treatment. J. Adhes. Sci. Technol. 2012;26:1233–1247.

Dányádi L., Renner K., Szabó Z., Nagy G., Móczó J., Pukánszky B. Wood flour filled PP composites: Adhesion, deformation, failure. Polym. Adv. Technol. 2006;17:967–974. doi: 10.1002/pat.838. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evaluation of Mechanical Properties and Filler Interaction in the Field of SLA Polymeric Additive Manufacturing

. 2023 Jul 12 ; 16 (14) : . [epub] 20230712

Influence of Alkali Treatment of Jatropha Curcas L. Filler on the Service Life of Hybrid Adhesive Bonds under Low Cycle Loading

. 2023 Jan 12 ; 15 (2) : . [epub] 20230112

Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler

. 2022 Mar 23 ; 14 (7) : . [epub] 20220323

Service Life of Adhesive Bonds under Cyclic Loading with a Filler Based on Natural Waste from Coconut Oil Production

. 2022 Mar 04 ; 14 (5) : . [epub] 20220304

Experimental Investigation of Wavy-Lap Bonds with Natural Cotton Fabric Reinforcement under Cyclic Loading

. 2021 Aug 26 ; 13 (17) : . [epub] 20210826

Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers

. 2021 May 18 ; 14 (10) : . [epub] 20210518

Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer

. 2020 Dec 09 ; 12 (12) : . [epub] 20201209

Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles

. 2020 Jun 22 ; 12 (6) : . [epub] 20200622

The Influence of Modification with Natural Fillers on the Mechanical Properties of Epoxy Adhesive Compositions after Storage Time

. 2020 Jan 08 ; 13 (2) : . [epub] 20200108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...